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a b s t r a c t

The paper presents ideas and observations about the use of the frequentist and the Bayes-
ian approach to estimation and uncertainty. The merits and the pitfalls of the Bayesian
approach, compared with the frequentist one, are illustrated using a simple example,
which gives rise to an instructive paradox. The impact of the paradox on the GUM approach
to uncertainty prescribed in Supplement 1 is highlighted and discussed.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The ‘‘Guide to the Expression of Uncertainty in Mea-
surement’’ (GUM), maintained by the Joint Committee for
Guides in Metrology (JCGM) of BIPM, is currently made of
three separate documents: an Introduction [1], the core
document [2], and the Supplement 1 [3] (other Supple-
ments are under preparation).

The GUM core document, denoted hereafter JCGM-100,
dates back to 1993 and has remained substantially un-
changed through years. JCGM-100 does not prescribe
explicitly a Bayesian approach to measurement uncer-
tainty, even if the very same definition of uncertainty
(‘‘dispersion of the values that could reasonably be attrib-
uted to the measurand’’) seems to suggest a Bayesian view.
Other parts of the document are implicitly frequentist, e.g.
when an ‘‘uncertainty of the uncertainty’’ is admitted and,
consequently, effective degrees of freedom are attached to
the uncertainty. Some statisticians have explicitly judged
the GUM a frequentist–Bayesian hybrid [4]. In particular,
having an uncertainty on the knowledge of a probability
density function (pdf), which is a model of incomplete

knowledge in itself, has been judged a serious internal
inconsistency [5], and has caused various suggestions to
take the Bayesian viewpoint [6–8]. Also the latest edition
of the International Vocabulary of Metrology (VIM) [9]
has pushed in this direction, since it is clearly Bayesian in
many points, for example in its definition of expanded
uncertainty (in terms of ‘‘coverage intervals’’, and not con-
fidence intervals).

The Bayesian revision of the GUM is in Supplement 1, de-
noted hereafter JCGM-101. This document is very clear-cut
in prescribing Bayesian definitions and procedures for mea-
surement uncertainty. The incomplete knowledge of quan-
tities is always described by exactly known pdfs, and rules
are given to establish the proper pdf for typical cases of
incomplete information. Another feature of JCGM-101 is
the accurate evaluation, via Monte Carlo (MC) method, of
both the best estimate and the uncertainty of a quantity,
even when first-order approximations are not acceptable,
and when Central Limit Theorem is not applicable (the
usual assumptions in JCGM-100).

The theoretical framework of JCGM-101 has been ana-
lysed in many papers, and some issues have been raised.
For example, in [10] and in [11], JCGM-101 computations
are compared with alternative ones made under the Bayes-
ian paradigm, and discrepancies between the results are
analysed. Without going deep into the content of these
papers, it must be said that the discrepancies are due – as
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usual with Bayesian inference – to explicit or implicit differ-
ences in the choice of the prior distribution. In particular,
[10] mentions the marginalization paradox and the possible
use of techniques for assigning priors that, although well-
known among statisticians, are different from the set of
rules stated in JCGM-101.

Paradoxes in Bayesian statistics are notorious, and
hardly considered a fatal problem; on the contrary, histor-
ically they have stimulated new findings and refinements
of the theory [12]. The Bayesian approach of the GUM
has stimulated researchers in the measurement field to ex-
tend the scope of their analyses, developing Bayesian esti-
mators, and comparing them with previously developed
frequentist estimators [13,14]. Therefore, in the authors’
opinion, there is no point in criticising Bayesianism on gen-
eral terms (unless one wants to take part in the endless
Bayesian–frequentist dispute).

A more practical question is whether some of the
known Bayesian paradoxes can actually lead to unaccept-
able results, in a concrete measurement situation, follow-
ing the normal JCGM-101 methodology. A related, and
more general question, is whether it is really convenient
to exclude completely frequentist methodologies, which
have obviously a very long tradition, and are customarily
used in countless practical estimation problems.

The paper develops ideas illustrated in [15] and pre-
sents a simple example of measurement made according
to the Bayesian and the frequentist paradigm, leading to
an instructive paradox. Although the paradox is already
known [16,17], its actual importance for a GUM user has
never been detected, and is not easy to recognise, as dem-
onstrated by an actual example in JCGM-101, in which the
paradox affects the result. The paper provides a detailed
analysis in order to clarify the issue, and to show the mer-
its and the limitations of both the Bayesian approach
(hereafter, BA) and the frequentist approach (hereafter,
FA) to estimation and uncertainty.

The paper is organised as follows. Section 2 outlines the
basic measurement situation examined, and the computa-
tion methodologies employed throughout the paper. Sec-
tion 3 illustrates the first part of the example, in which
the BA obtains the same results of the FA, but using a far
more convenient, and even elegant, theoretical framework.
Section 4 illustrates the second part of the example, in
which BA and FA leads to opposite results. In Section 5
the different conclusions of the Bayesian and the frequen-
tist methodology are analysed and commented. The paper
is closed by final considerations (Section 6) and
conclusions.

2. Basics: proposed example and methods of
computations

Fig. 1 depicts a simple and idealised, yet not unrealistic,
measurement situation.

The voltmeter yields the single measurement Y = X + N,
where X is the voltage of a battery and N is additive Gauss-
ian thermal noise, with zero mean and known variance r2

(the assumption of known variance is common and not
unrealistic, as it can be computed from the resistor value,

the absolute temperature, and the equivalent noise band-
width of the system). The voltage X is known to be in the
interval [�a; a], which is ‘‘large’’ with respect to the noise
perturbing the measurement, i.e. a� r. No other prior
information is available about X. The measured voltage is
Y = y0. The aim is to give the best estimate, and the associ-
ated uncertainty, of two quantities:

(1) the voltage X;
(2) the power W = X2, transferred by the voltage source

on a unit-value resistor.

Although apparently simple and straightforward, a full
analysis of the problem with the Bayesian and the frequen-
tist approach requires the computation of a number of
pdfs, together with the associated expected values and
variances. The complete list is:

(1) fX(x), (prior) pdf of the variable X;
(2) fW(w), (prior) pdf of the variable W = X2;
(3) fY jX¼x0 ðyÞ, pdf of the variable Y for a given value of the

measurand, X = x0;
(4) fZjX¼x0 ðzÞ, pdf of the variable Z = Y2 for a given value of

the measurand, X = x0;
(5) fXjY¼y0

ðxÞ, (posterior) pdf of the variable X for a given
value of the measurement, Y = y0;

(6) fW jY¼y0
ðwÞ, (posterior) pdf of the variable W = X2 for a

given value of the measurement, Y = y0.

In the following, all the listed pdfs, and the related ex-
pected values and standard deviations, are computed in
three ways:

(a) analytically, whenever possible, by making proper
assumptions and approximations if needed;

(b) numerically, by evaluation of exact formulae (e.g.
involving integrals, etc.);

(c) by MC simulations.

For the numeric and MC evaluations the following values
are used: [�a; a] = [�10; +10] mV, r = 1 mV, y0 = 2.5 mV.
The numeric evaluations of distributions are made in
N = 105 points, equispaced in a suitable interval, i.e.
[�a � 4r; a + 4r] = [�14; +14] for the variables X and Y,
and [0; a2 + 4r] = [0; 104] for the variables W = X2 and
Z = Y2. Numeric values of expectations and standard devia-
tions, as derived on the basis of the numerically evaluated
distributions (point b), are reported with seven significant
digits, in order to show the very small differences with
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Fig. 1. Measurement of a voltage with additive Gaussian noise.
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