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a b s t r a c t

Based on the detailed analysis of systematic errors, mathematical model of error parame-
ters is constructed and linear calibration method is proposed for magnetic gradient tensor
system. Firstly, nonlinear mathematical model of error parameters for single vector mag-
netometer is constructed based on scalar calibration, and least square solution is deduced
by two nonlinear conversions without any mathematical simplification. Then outputs of
four tri-axial magnetometers are calibrated to sensor’s orthogonal coordinate respectively.
Secondly, a least square estimation is proposed for the misalignment errors between differ-
ent magnetometers according to the rotation matrix comprising conversion of different
orthogonal coordinate system. After calibration, outputs of tri-axial magnetometers are
acquired along the ideally platform frame-orthogonal coordinate system and these enable
calibration of magnetic gradient tensor system. Simulations and experiments show that
the proposed linear calibration method can accurately solve the detailed error parameters
and decrease measurement errors of magnetic gradient tensor system remarkably.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetic gradient tensor measurements have many the-
oretical advantages over conventional magnetic surveys.
For example, gradients of the magnetic field components
are insensitive to orientation and rotation noise, which
can offer better spatial resolution than magnetic field vec-
tors and total magnetic intensity. In addition, gradient mea-
surements have a high degree of immunity from regional
background fields and diurnal variations [1–3]. In the last
decades, magnetic measurement theories and sensor tech-
niques have been widely improved. Several magnetic gradi-
ent tensor systems comprising fluxgate magnetometers or
superconducting quantum interference devices have been
developed, and some research institutes have done some

tentative experiments of magnetic gradient tensor mea-
surement [4–7].

Magnetic gradient tensor systems with different struc-
tural forms comprise multiple vector magnetometers.
Because of the technological and material limitations in
the magnetometer manufacturing process, there are some
systematic sources of error, including hard and soft iron
errors, sensor biases, scale factors and non-orthogonality,
which seriously affect the accuracy of magnetometer. Mag-
netic gradient tensor errors may have thousands of
nanoteslas and they have to be corrected. In addition, dur-
ing the installation process of different magnetometers,
displacement and rotation errors may be caused by the
magnetometer move away and rotate according to the
installation central point. The displacement errors caused
by the mechanical technology could be neglected or obvi-
ated by higher precision machinery. However the rotation
errors cannot be neglected and they bring misalignment
errors, which must be calibrated carefully, between the
different sensitive axes of magnetometers.
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There are some literatures about the magnetic sensor
array calibration [8,9]. Without loss of generality, calibra-
tion methods of vector magnetometer could be passed onto
the magnetic gradient tensor system comprising multiple
magnetometers. Calibration approaches for vector magne-
tometer could be divided into vector calibration and scalar
calibration method [10,11]. Vector calibration technique
needs a 3D Helmholtz coil system to generate arbitrary
magnetic field vectors, and then the sensor biases, scale fac-
tors, non-orthogonality angles could be obtained simulta-
neously. However a dedicated facility with coils, ultra-
high precision tri-axial non-magnetic platform and other
expensive equipment are required and it is impractical for
in-field use. Sometimes the cost of vector calibration
approach far outweighs cost of the magnetometer itself
[12]. Scalar calibration, described as a ‘‘poor-man’s’’ cali-
bration method [13], does not require a high degree of
expertise or an expensive hardware, and only needs a
homogenous magnetic field and a scalar proton magnetom-
eter which is used to measure the intensity of the magnetic
field. Thus we consider scalar calibration for magnetic gra-
dient tensor system.

Scalar calibration for magnetic gradient tensor system
is mostly two-step method [14,15]. Calibration for the sin-
gle vector magnetometer errors is provided as a first step
and the second step is to calibrate the misalignment errors
between different magnetometers. Yu et al. [16] achieved
calibration of magnetic gradiometer, but second or higher
order small quantities are neglected in the process of single
magnetometer calibration model and the calibration devi-
ations are brought in. Pang [17] used the Levenberg–
Marquardt algorithm to achieve calibration of single vector
magnetometer and calibrated the misalignment errors
considering the first magnetometer as a reference. How-
ever, little work has been done on the calibration of mag-
netic gradient tensor system with linear method. On the
other hand, choosing one of the magnetometers as refer-
ence magnetometer to correct the vector alignment differ-
ences for the other magnetometers cannot transform
outputs of the magnetic gradient tensor system along the
platform frame-orthogonal coordinate.

By classifying the systematic sources of error, nonlinear
mathematical model for single vector magnetometer is
constructed based on scalar calibration in this paper. With-
out any mathematical simplification, the nonlinear model
is transformed to the linear model by two nonlinear substi-
tutions and error parameters are deduced according to the
least square method. Based on this, a least square estima-
tion is proposed according to the rotation matrix compris-
ing conversion of different orthogonal coordinate for the
misalignment errors. So outputs of the magnetic gradient
tensor system are converted along the platform frame-
orthogonal coordinate. Simulations and experiments based
on fluxgate magnetometers are tested and linear calibra-
tion of magnetic gradient tensor system is achieved.

2. Magnetic gradient tensor measurement principle and
system

Magnetic gradient tensor is the spatial rate of change of
the magnetic field vector in three orthogonal directions. If

B denotes magnetic field vector and magnetic gradient ten-
sor G can be written as multiplication of two matrices
which contain three vector elements respectively.
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where U denotes magnetic scalar potential, Bx, By and Bz
are measured magnetic field components in three orthog-
onal directions, Bpq, p, q = x, y, z denote magnetic gradient
tensor component in different directions.

The geomagnetic field and magnetic anomaly caused by
the ferromagnetic matter are magnetostatic fields which
do not contain conduction currents. So the curl and diver-
gence of magnetic field are equal to zero according to Max-
well’s magnetostatic equations.
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According to (1) and (2), G is symmetric and traceless,
only five of nine tensor components are independent.

It is not available to intrinsically measure second deriv-
ative of magnetic scalar potential and gradients of mag-
netic field vector. So measurements must estimate
gradients by differencing vector measurements over short
baseline [4]. However this approximation neglects high
order derivatives of Taylor series. Herein, we define the
neglected high order derivatives which arose by geometric
configuration structure of the vector magnetometer array
as structure errors, and the structure errors also affect
accuracy of the magnetic gradient tensor measurements.

Several different configurations of magnetic gradient
tensor system are analyzed in [18], simulation results
denote that the plane cross tensor structure is the best
and it has the minimal structural errors. Based on this, a
cross magnetic gradient tensor system comprising four
tri-axial magnetometers is designed in this paper and its
sketch map is shown in Fig. 1. The x and y axes lie along
the orthogonal baselines and the z axis is chosen to make
a right-handed Cartesian coordinate system. Baseline dis-
tance between two magnetometers in the same direction
is 2d.

Tensor formula of the cross magnetic gradient tensor in
the point O is shown as:
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where Bij, i = 1, 2, 3, 4, j = x, y, z denote magnetic vector
component in the j direction of the i-th magnetometer.

Structure errors of the cross magnetic gradient tensor
system can be shown as follows [19].
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