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a b s t r a c t

A machine vision method for measuring normal strain with high precision is presented. In
the method, planar projection is modeled in order to enable the measurement without
requiring coplanarity of the imaging and measured plane. Some of the model parameters
are determined using translational displacements of known value. Along the single direc-
tion according to the need of measurement, the correction of distortion is involved in the
method to improve the precision. Experiments were designed to validate the accuracy of
the proposed method and confirm factors affecting the measurement results.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Normal strain is an important parameter in studying
and evaluating mechanical properties of materials. In
industry, the strain is determined by tensile test, which re-
quires deformation of the material measured along the
loading direction. Therefore, it is an important research
subject to measure the deformation of the material accu-
rately and effectively.

With the development of digital image technology,
machine vision was widely used in the deformation
measurement [1,2], which made up of much lack of the
contact methods. Accuracy is a primary factor to determine
whether the machine vision methods can be used for
deformation measurement. Although modern imaging
techniques have increased the pixel precision [3–6], the
model of measuring the deformation still faced some
problems, such as replacement of grips of testing machines
or change of size and shape of the measured specimens,
which caused that the measured plane was not coplanar
with the imaging plane. Although the coplanarity could
be achieved by adjusting the position and pose of the

camera, this adjustment might be inconvenient and
time-consuming.

There are essentially two kinds of models in various
existing methods of the deformation measurement. One
is calibrating the scale factor between the pixel and actual
size as a function of pixel coordinates. In 1998, using the
function of scale factor, Taylor et al. [7] achieved an accu-
racy of 1/5600th of the FOV (field of view) in measuring
deformation. Paikowsky et al. [8] proposed a second-de-
gree polynomial fit to improve the model, and achieved
an accuracy of 1/1266th of the FOV in 2000. Alshibli
et al. [9,10] added distortion correction to the model in
2001. By the method, accurate 3D deformations of cylindri-
cal sand specimens at different axial strain levels were
reconstructed in tri-axial test aboard the Space Shuttle.

The other model is to employ a parametric perspective
imaging model of converting pixel coordinates into object-
space position. In 2003, White et al. [11] developed a mea-
suring system based on a 14-parameter transformation
which was proposed by Heikkila [12]. Performance of the
model is obviously improved in accuracy, precision, and
measurement array size with a relatively inexpensive
2-megapixel digital camera only. In 2010, Tang et al. [13]
proposed a 3D digital image correlation system for mea-
suring deformation and a stereo camera self-calibration
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algorithm was used based on photogrammetry to calculate
the parameters. An accuracy of 0.4% deviation compared
with the extensometer data was obtained. Ke et al. [14]
established a stereo-based model with 24 invariant param-
eters in 2011. Based on the model, a large number of exten-
sive numerical simulations and theoretical analyses were
carried out to predict the uncertainty in locations, dis-
placements and strains. Experiments in [15] demonstrated
that they were in excellent agreement with actual mea-
surements of surface strains.

In sum, the two models mentioned above bring to
deformation measurement both advantages and disadvan-
tages. The first kind of model is simple in calculation, but is
valid only if the camera behaves according to the pin-hole
model and the object plane is exactly coplanar with the
imaging plane. The measurement accuracy will be lower
if distortion correction is not employed. On the contrary,
the second kind of model improves the precision greatly,
but the plethora of parameters increases the complexity
of computation, which limits its promotion and
application.

The present work proposes a planar projection model to
calibrate the measuring scale. The model is established
without requiring the coplanarity of imaging and mea-
sured plane. Besides the pixel coordinates of the image
center and a scale factor, only one parameter is exploited
to present the influence of object distance changes on the
measurement as the measured plane is not coplanar with
imaging plane. In addition, the detected pixel coordinates
are corrected along a single direction to increase the mea-
suring accuracy. In this way, a real-time measurement
with high-precision for tensile strain will be realized.

The rest of this article is organized as follows: Section 2
outlines the projection model for calibrating the measuring
scale, and presents the method of determining the param-
eters. Section 3 introduces the principle of distortion
correction. Section 4 describes the experiments to test
measuring accuracy, and the influences of certain factors
are analyzed experimentally. Finally, the conclusion is
given in Section 5.

2. Imaging model and measurement principle

Since the perspective geometry has been widely applied
to model the imaging system of camera [16], a deformation
measurement model based on its principle is presented. As
shown in Fig. 1, XWYWZWOW is the World Coordinate
System (WCS) locating on the measured plane I, and xyo
is the Pixel Coordinate System (PCS) locating on the
imaging plane II. Plane II, III and IV in Fig. 1 are mutually
perpendicular to each other. And plane III is parallel to
the y-axis.

In practice, the imaging plane could not be placed in a
position coplanar with the measured plane. They are
related by a relative rotation of u around y-axis and a
relative rotation of h around x-axis.

As the existence of the rotation angle u, the object dis-
tance s1 of each point along the mark is different, which af-
fects the imaging position of the mark. However, for the
points which have the same x-coordinate, the object

distance s1 will not be influenced by u. That is to say, if
the calibration and measurement are carried out on a fixed
plane on which the points have the same x-coordinate (e.g.
plane III in Fig. 1), the 3D measurement model could be
simplified to a 2D model, as shown in Fig. 2. In practice,
the edge points with the same x-coordinate were detected
as the pixel positions of marks, and the rotation angle u
certainly could not be involved in the measurement model.

In Fig. 2, a1b1 is the distance between the upper and
lower marks before deforming, and a2b2 is the distance be-
tween them after deforming. t1n1 and t2n2 are the pixel
positions of a1b1 and a2b2, respectively. o1 is the intersec-
tion point of optical axis and measured plane, and o2 is
the image center. Meanwhile, each length is represented
by a symbol, as shown in Fig. 2. From the geometric rela-
tionships, the perspective projection can be expressed as:

A1 � cos h
s1 þ A1 � sin h

¼ T1

s2
ð1Þ

A2 � cos h
s1 þ A2 � sin h

¼ T2

s2
ð2Þ

where s2 is focal length. Then, A1 and A2 are obtained by Eq.
(1) and (2):

A1 ¼
T1 � s1

s2 � cos h� T1 � sinh
ð3Þ

A2 ¼
T2 � s1

s2 � cos h� T2 � sinh
ð4Þ

So actual displacement of the upper mark is:

DlA ¼ A1 � A2

¼ s1 � s2 � DlT � cos h
ðs2 � cos h� T1 � sin hÞ � ðs2 � cos h� T2 � sin hÞ ð5Þ

Dividing numerator and denominator in the right side
of Eq. (5) by s2

2 � cos2 h, yields:

D̂lA ¼
k1

ð1� k2 � T1Þ � ð1� k2 � T2Þ
� DlT ð6Þ

where k1 = s1/(s2�cos h), k2 = tan h/s2. In the same way, the
displacement of lower mark is:

D̂lB ¼
k1

ð1þ k2 � N1Þ � ð1þ k2 � N2Þ
� DlN ð7Þ

In Eq. (6) and (7), one has k2 = 0 and k1 = s1/s2 as h = 0.
Now these two equations become the equivalent viewing
model, which indicates that the classical pin-hole model
is a particular cause of the proposed model. As the pixel
coordinates of the image center (x0, y0) has been obtained
by the calibration method in Zhang [17], there are only two
parameters (k1, k2) need to be calibrated here.

In the calibration of (k1, k2), the specimen was trans-
lated rigidly. Therefore DlA = DlB, in other word:

k1 � DlT

ð1� k2 � T1Þ � ð1� k2 � T2Þ
¼ k1 � DlN

ð1þ k2 � N1Þ � ð1þ k2 � N2Þ
ð8Þ

Two real roots will be obtained by solving the above
quadratic equation of k2. In the actual measurement, it
could be inferred that k2 = tan h/s2 should be a small value
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