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a b s t r a c t

The evaluation of uncertainty in dynamic measurements has recently become a demanding
issue. A Bayesian approach is employed here to derive the equations required to recursively
generate the solution to the problem of estimating (and predicting) the states of linear
dynamic systems. It is shown that this approach allows a derivation of Kalman’s filtering
algorithm which is more easily accessible to those involved with dynamic measurements.
The complete time-varying Kalman filter is particularly useful when the linear dynamic
system and/or signal statistics are time varying and also when optimum estimates are
required from the very beginning.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In most measurements, it is generally assumed that the
value of the measurand is constant and unique. The Guide
to the Expression of Uncertainty in Measurement (GUM) [1]
and its supplement 1 (GUM S1) [2] have been conceived
on this assumption.

However, in many measurements that are important for
scientific and industrial applications the value of the
measurand varies over time. The evaluation of uncertainty
in dynamic measurements has therefore received an
increasing attention in recent years [3–7]. The methods
proposed are in general applicable to dynamic measure-
ments made with linear time-invariant systems. The goal
has been to suggest practical dynamic analysis aligned
with the general principles of the widely accepted GUM.
A different viewpoint which allows nonstationarity at the
outset is adopted here. This is particularly useful when
the dynamic system and/or signal statistics are time

varying and also when optimum estimates are required
from the very beginning.

Bayesian methods provide a general framework for the
assessment of uncertainty in traditional ‘stationary’
metrology [8,9]. Mathematically, it is formulated in this
way: one requires the posterior distribution for the measu-
rand which tells one as much as it is possible to know (and
no more) about the measurand from whatever information
is available such as direct measurements, established rela-
tions with other quantities, expert judgment, physical
plausibility, manufacturer’s specifications, and calibration
certificates. The estimate of the measurand and the uncer-
tainty associated with the estimate are then obtained from
the moments of that distribution.

There is no reason for the quantity ‘time’ not to be in-
cluded in the above framework. In many estimation
problems, especially those involving dynamic systems
modeled in the state-space representation, observations
are made sequentially in time and up-to-date state esti-
mates are required. Bayesian methods also provide a rigor-
ous general framework for dynamic state estimation
problems. In this case, the Bayesian approach is to construct
the posterior distribution for the state based on all the avail-
able information.
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The recursive solution to the discrete-time linear
estimation problem was first published by Kalman [10].
The estimation algorithm is the so-called Kalman filter.
Such filters allow nonstationarity, and their recursive form
is easy to implement. The Kalman filtering algorithm made
it possible to navigate precisely over long distances and
time spans; it is used extensively in all navigation systems
for deep-space exploration.

Historically, this signal estimation problem was viewed
as filtering narrowband signals from wideband noise;
hence the name ‘‘filtering’’ for signal estimation. The objec-
tive of the estimation was to minimize the mean square
error (MSE) between the random signal and its estimator
when observations of a related random process are avail-
able. Kalman used orthogonality to derive his filtering
algorithm. His exposition in [11] summarized the contribu-
tion of his original paper, although many details are differ-
ent. Kalman’s equations have often been derived using
innovations. The concept of innovations, or the unpredict-
able part, of observations was introduced by Kailath [12].
The equations have also been derived in other classical
ways [13].

Kalman’s equations were derived using a Bayesian
approach for the first time in [14] and a similar approach
was used in [15]. Methods that employ Bayes’ theorem
were also used to derive the equations [16,17]. A Bayesian
derivation which it is believed is more easily accessible to
those involved with dynamic measurements is presented
here. It will be shown that for the linear-Gaussian estima-
tion problem, the posterior distribution for the state
remains Gaussian at every iteration of the filter, and the
Kalman filter relations propagate and update the moments
of the distribution. The estimate of the state and the uncer-
tainty associated with the estimate then become available
at each iteration of the filter.

This article is restricted to linear dynamic systems. For
nonlinear or non-Gaussian problems there is no general
analytic (closed-form) expression for the required poster-
ior distribution and one needs to resort to computationally
intensive methods. The latter are topics for future research.

The article is organized as follows. Linear dynamic mod-
els are introduced in Section 2. The equations required to
recursively generate the solution to the estimation prob-
lem are derived in Section 3. The prediction problem is dis-
cussed in Section 4. The analysis is extended to the more
general vector case in the next sections. The reader mainly
interested in that case may start directly in Section 5. A
summary is provided in Section 8.

2. Dynamic models – scalar case

Upper-case italicized Latin letters will denote scalar
quantities. The possible values that they are deemed to as-
sume will be denoted by lower-case italicized Greek
letters. Lower-case italicized Latin letters are reserved for
constants. Scalar variances will be generically referred to
by lower-case italicized Greek letters.

Linear dynamic models are state-space models whose
state unpredictable variations with time are described
probabilistically. They are characterized by a pair of

equations, named the observation and system equations
[18,9], that is, respectively,

Xn ¼ bnZn þ en; en � Nð0;r2
nÞ ð1Þ

Zn ¼ an;n�1Zn�1 þwn; wn � Nð0;x2
nÞ ð2Þ

where n is the time index (n = 1, 2, . . .), Xn is the observa-
tion sequence, bn is a known series of constants describing
the linear relationship between the state and the observa-
tion, Zn is a Gauss-Markov sequence, or a first-order auto-
regressive sequence of unknown process states, wn is the
so-called system noise driving function, i.e., a noise
sequence normally distributed with zero mean and known
variance x2

n , an,n�1 is a known series of constants, which is
a description of the known first-order difference equation
of the system, en is a noise sequence normally distributed
with zero mean and known variance r2

n. It is assumed that
both wn and en are identically and independently distrib-
uted (white noise) and mutually uncorrelated.

Here all participating quantities are regarded as random
variables when there is uncertainty about their values –
either because knowledge about them is imperfect or
incomplete, or because they are subject to the unpredict-
able variations of experimentation. This position does not
imply that the value of any of the participating quantities
is ‘variable’ in the common sense of this word. The defining
trait of the Bayesian approach is to treat all participating
quantities as random variables whose probability density
functions (pdf) encode and convey states of (incomplete)
knowledge about them [19–22].

3. Estimation – scalar case

Let dn = {dn�1, Xn = xn}, with d0 describing the initial
available information, including the values of an,n�1, bn,
x2

n and r2
n, "n, which are supposed to be known. All the

information dn�1 about the unknown state is encoded by
the posterior pdf at n � 1 and used to derive the new pos-
terior once the data sample Xn = xn is received at n. It is
shown in the sequel how to evolve from the posterior
pdf at n � 1 to the posterior at n.

Denote the posterior pdf at n � 1 by

pZn�1
ðfn�1 dn�1j Þ / exp � 1

2m2
n�1

ðfn�1 � f̂n�1Þ2
� �

ð3Þ

It is assumed that initially at time n = 1, information
concerning the state Z0 was described in the form of a
Gaussian probability distribution with known mean f̂0

and variance m2
0. The prior pdf at n will be

pZn
ðfn dn�1j Þ / exp � 1

2q2
n
ðfn � ~fnÞ2

� �
ð4Þ

with
~fn ¼ an;n�1f̂n�1 ð5Þ

q2
n ¼ a2

n;n�1m
2
n�1 þx2

n ð6Þ

This follows immediately from (2) and the properties of the
Gaussian distribution.

A sampling distribution with unknown location and
scale parameters is assigned that describes the prior
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