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a b s t r a c t

A new, fully statistical approach for regression analysis is presented and used for deriving
the formula for the estimation error of the parameters of the fit and the associated joint
confidence levels assuming a normal (Gaussian) distribution of the measurement errors
and using a type A evaluation of the uncertainties. The key feature of the approach consists
in two complementary parameterizations of the error space that are equivalent to a change
of coordinates. This feature makes possible all the derivations and gives a marked statisti-
cal character to the approach. Although this approach is more lengthy and laborious than
the usual one, it has the advantage that follows step by step all the intricacies, statistical
and topological, of the regression analysis, and the final formulae do not appear as black
boxes to be used such as they are, but all their components have established meanings.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In metrology, besides the actual measured value of the
quantities and the estimated value of the parameters,
one needs to know their uncertainty. One common situa-
tion is to fit data to a nonlinear function using the least
squares method (the more simple case of linear functions
can be inferred from the formulae for the nonlinear func-
tion as a particularization). The case is amply analyzed in
the scientific literature [1,2]. We think, however, there
are some new contributions that we can bring to the sub-
ject. Namely we show a fully statistical approach in the
derivation of the error analysis formulae for the case when
a Gaussian distribution of error is assumed and a type A
evaluation of uncertainties is used. Although our formulae
are basically the same as those shown in Bevington’s book
[1], they are obtained in a different way. The difference be-
tween the approach described by Bevington and ours is
similar with the difference between the phenomenological
and the statistical approach in thermodynamics.

The confidence levels and the limits for the parameters
fit values are calculated using Dv2 isocontours (see Fig. 1).
The probability for a certain value of Dv2 is not the same as
the probability for a certain parameter estimation error,
but it is a good approximation and mathematically more
simple to calculate. The technique for error analysis pre-
sented here is a negative, ‘‘pessimist” approximation. It as-
sumes the worst situation, and in some cases the real error
is smaller.

2. Sets of measurement errors

A Gaussian distribution of the measurement errors is
assumed. Although our analysis is meant for the fit to
nonlinear functions, in all the derivations we kept only
the first order terms of the Taylor expansion for simplic-
ity. We dealt with first order partial derivatives only. The
linearization is legitimate as long as we have small errors
and for joint confidence levels below a certain value, usu-
ally about 90%. We obtained the general expressions for
the parameter errors in the case of fitting a large number,
say N, of measurements, for estimating a number of M
parameters. The expressions of the parameter errors are
functions of the partial derivatives of the measurands
with respect to the parameters to be estimated and the
standard deviations of the measurements (ri).
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Let us denote the set of measurands by qi, i = 1, . . . ,N and
the parameters to be estimated by pj, j = 1, . . . ,M. For con-
venience we will sometimes use the notation

�p � ðp1 p2 � � � pMÞ
T
; ð1Þ

where the superscript ‘‘T” means transposition. The
measurands qi are functions of the parameters pj. Obvi-
ously N has to be larger than or equal to M. The fitting pro-
cedure requires that we search for the curve that is the best
fit of the experimental data. The corresponding parameters
p0

j are the most probable parameters. That is to say p0
j are

the parameters for which the function

v2
Nð�pÞ ¼

XN

i¼1

qið�pÞ � qexp
i

� �2

r2
i

ð2Þ

reaches its minimum, where qexp
i are the experimentally

measured values. Then at �p ¼ �p0 (in this entire article the
derivations with respect to the parameters pj are done at
�p ¼ �p0) we have

ov2
N

opj
¼ 0; j ¼ 1; . . . ;M: ð3Þ

This is the same as

XN

i¼1

1
r2

i

oqi

opj
D0

i

 !
¼ 0; j ¼ 1; . . . ;M; ð4Þ

where

D0
i ¼ qið�p0Þ � qexp

i ; ð5Þ

with the associated probability density of

P
D0

i

ri

� �
¼ 1ffiffiffiffiffiffi

2p
p exp � D02

i

2r2
i

 !
ð6Þ

D0
i ; i ¼ 1; . . . ;N is the set of measurement errors associated

with the set of measured values qexp
i , and the fitted param-

eter values �p0. The error sets like those defined in Eq. (5)
form an RN—M subspace of the RN error space, because M
constraints are imposed upon D0

i in Eq. (3). Therefore this

subspace can be parameterized with N–M parameters.
Since �p0 has a determined, unique value, basically, the N–
M degrees of freedom of this parameterization means that
�qexp can have only values that satisfy Eq. (3). We are not
going to do this parameterization, because it would serve
no purpose, but it is important to note the possibility of
it. This parameterization takes care of N–M dimensions
out of the N dimensions of the error space. A complemen-
tary parameterization of the remaining M dimensions
combined with the first parameterization would be equiv-
alent to a change of coordinates.

The same way as in Eq. (5) we define another set of
measurement errors, the set corresponding to the situation
when the values of the parameters are not �p0 but �p, for a
any set �qexp that satisfies Eq. (3)

Di ¼ qið�pÞ � qexp
i ; i ¼ 1; . . . ;N: ð7Þ

This is a class of error sets with the M degrees of free-
dom of �p. If qi would be a linear function of �p, (7) would
be precisely a complementary parameterization like the
one we were talking about above. For a small departure
from �p0; qi have an approximately linear dependence on
�p. For a value of �p far from �p0 the linearity is not valid any-
more, of course, but the corresponding errors have low
probability and they can be discarded. The complementar-
ity results from the linearity in �p of the errors of the type
showed in Eq. (7) and the fact that �p is independent of
the parameters of the first parameterization, for the errors
of the type shown in Eq. (5). This can be seen from the fact
that the first parameterization correspond to a single value
of �p, namely �p0. We will come back below to this issue with
a geometric, intuitive illustration. The complementarity of
the two parameterizations is a key feature of this contribu-
tion that, on the one hand, it gives to the contribution a
marked statistical character by allowing it to cover the
whole ensemble of measurement error sets, and, on the
other hand, makes possible the ensuing derivations by
greatly simplifying the algebra. Since the following consid-
erations in which we used the second parameterization are
valid for every set qexp

i , then we have taken into account all
the possible error measurement sets.

Obviously we have

v2
Nð�pÞ ¼

XN

i¼1

D2
i

r2
i

: ð8Þ

Using a linearized Taylor expansion we can express v2
N as
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In (9) we used (4) for simplifying the expression. It is
more suitable to use a different function instead of v2,
namely

p1

p2

p1
0

p2
0

2σ(p1)

2σ
(p

2)

Δχ2=const

Fig. 1. The ellipsoid of equal probability (Dv2 isocontour). For two dim-
ensions we have an ellipsis. The errors are the maximum dimensions of
the ellipsoid as indicated in the figure.
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