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The GUM modelling, its Bayesian modification and the Monte Carlo method (MCM) to esti-
mate the uncertainty are compared in two practical measurement situations (finding ref-
erence value of relative humidity and a generic chemical instrumental analysis procedure).
The results of the three approaches agree very well when there are no dominant input
quantities with type A evaluated uncertainty estimated from small number of repeated
measurements. In the opposite case the GUM gives underestimated expanded uncertain-
ties (by up to 20-25%), compared to both other approaches. Analysis of the practical mea-
surement situations reveals that even in the case of several dominating input quantities of
similar uncertainty contributions, if one of them is distributed according to the t-distribu-
tion and has a low number (3-4) of degrees of freedom, the output quantity cannot be
safely assumed Normally distributed and in such a case coverage factor 2 is not an equiv-
alent to 95% coverage level.
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1. Introduction

Indirect measurements, where the output quantity va-
lue is calculated from one or more input quantity values
(parameters measured directly, such as temperatures, li-
quid volumes, masses and others) [1] are very common
in physics and chemistry. Besides calculating the best esti-
mate of the output quantity it is also very important to
characterize its uncertainty. The traditional way of finding
the uncertainty of an output quantity is via the GUM
uncertainty framework [1] whereby the uncertainties of
the input quantities are converted to standard uncertain-
ties u and are combined using the measurement model
(measurement equation) to give the combined standard
uncertainty of the output quantity u.. Because the coverage
level of u. is too low for many applications, uncertainty is
usually reported as expanded uncertainty U, obtained via
multiplying u. by a suitable coverage factor k.
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In many cases this approach works well. However, it
has certain disadvantages. The most important of these
is that, except in the simplest cases, the probability den-
sity function (PDF) of the output quantity remains un-
known (here and below we assume that the output
quantity, as well as all the input quantities have probabil-
ity density functions as is done in Ref. [2]). Therefore, rig-
orous calculation of U corresponding to a specified
coverage level is not possible and some assumptions or
simplifications have to be introduced. Two cases are most
widespread:

1. The most common assumption is that the input quanti-
ties are independent and that their combination leads
to a Normal distribution of the output quantity. This
has led to the “de facto standard practice” of presenting
measurement uncertainty as k=2 expanded uncer-
tainty and implicitly interpreting it (based on the prop-
erties of Normal distribution) as corresponding to
roughly 95% coverage level. It is true that in many cases
this approach is fully justified.
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2. The most frequent exceptions from the assumptions of
the case 1 are believed to be those where there is a non-
normally distributed dominating input quantity, in par-
ticular, one that is evaluated as the mean of a limited
number of individual measurement results. In such a
case one of the most frequent approaches is to assume
that the PDF of the output quantity can be modelled by
a shifted and scaled t-distribution. The effective number
of degrees of freedom df, necessary to characterize this
PDF is usually estimated from the Welch-Satterthwaite
(WS) approach [1] or some of its modifications [3-5].
Even though the WS approach has serious limitations
that have been repeatedly pointed out [6-8] it is cer-
tainly useful if the measurement model is linear and
output quantity is distributed Student like [9]. In partic-
ular, the European Cooperation for Accreditation (EA)
have united both these cases into their uncertainty
guide [10] and there has been a detailed study arriving
at a conclusion that the WS approach performs very
well [11].

Standard deviations evaluated from a limited number of
repeated measurements (measurements carried out under
the same conditions) are very common in e.g. chemical
analyses/measurements, where repetitions are often
costly. The chemical analysis example that we give below
is a typical one: the repeated measurements that are made
are not just instrumental measurements (measurement
with a certain analytical instrument, such as spectropho-
tometer, and gas chromatograph). Every such repeated
measurement needs the whole sample preparation se-
quence that involves adding reagents, waiting for reaction
to complete, etc. It is well possible in a scientific laboratory
to make many repeated measurements also in such a case,
but this is not possible at a routine analysis laboratory that
does analysis work as business. Thus, limited number of re-
peated measurements is rather common at routine analy-
sis laboratories.

The main problem is that it can be very difficult, espe-
cially at routine laboratory level, to recognize the situa-
tions when the limitations of the WS approach apply. The
second disadvantage of the GUM approach is that it is
sometimes (especially in the case of strongly non-linear
models) difficult to calculate the sensitivity coefficients of
input quantities.

Recognizing these problems of the GUM approach the
Joint Committee for Guides in Metrology (JCGM) and its
member organizations have prepared Supplement 1 to
the “Guide to the expression of uncertainty in measure-
ment” - Propagation of distributions using a Monte Carlo
method (MCM) [2]. MCM has several advantages com-
pared to the GUM uncertainty framework [4,5]. It enables
to find a numerical approximation of the PDF of the out-
put quantity, thus giving significantly richer information
about the output quantity than the GUM approach. With
the output quantity PDF available it is easy to calculate
the mean, standard deviation, and to find the coverage
interval with a preset coverage level (which allows also
to find the coverage factor). This method also saves
researchers from calculating sensitivity coefficients of in-
put quantities.

Besides the GUM uncertainty framework and MCM
other approaches have been proposed for uncertainty eval-
uation. According to [2] every input quantity has an indi-
vidual PDF and so does the output quantity. This is not
the only possible assumption. According to the Bayesian
statistics the measurement results are constants and the
value of the measurand is a random variable [9,12]. If the
number of degrees of freedom is finite the uncertainty is
believed to be uncertain according to GUM uncertainty
framework [1,9,12,13]. According to the Bayesian approach
the uncertainty does not have statistical uncertainty [9]
and it is more appropriate to use in cases if one or more in-
put quantities have low number of degrees of freedom.

Interestingly, the classical uncertainties can be used in
the Bayesian framework if they are treated from the Bayes-
ian point of view [12]. The relationship between the classical
type A evaluated uncertainty us(x) and Bayesian uncertainty
Ua gayes (X) is given by the following formula [12]:

(n—1)

uA‘Bayes(X) = - Ua (X) (1)

where n is the number of repeated measurements. This
equation allows to “correct” for a low number of degrees
of freedom and to express the standard uncertainty as
Ua payes COTTEsponding to approximately Normal distribu-
tion: the uncertainties upayes When combined with each
other and with B-type uncertainties (the latter are used
unchanged), will yield a combined standard uncertainty,
which assumes approximate Normal distribution of the
output quantity. In this case there is no need to estimate
the number of effective degrees of freedom when calculat-
ing the expanded uncertainty, because the output quantity
can be assumed to be approximately Normally distributed
[9]. Below we term this approach as the Bayesian modifica-
tion of the GUM. If the requirements for using the WS ap-
proach are not fulfilled (or it is difficult to find out) this
approach is very useful.

In order to be accepted and used confidently, every new
approach strongly benefits from application examples.
Several application examples on the MCM approach have
been included and are analyzed in the Supplement 1 [2].
There have been reports of using MCM for uncertainty cal-
culation [4,5,14-18] many of them emphasizing its advan-
tages over the GUM uncertainty framework. There has,
however also been a report on an opposite finding [19].
Examples on the application of the Bayesian approach
about different measurement fields have also been pub-
lished [20-22].

In this paper we present the analysis of two different
measurement cases, both from physics and chemistry.
These are analyzed in parallel in terms of the GUM approach,
GUM modified by the Bayesian approach (using the assump-
tion of approximate Normal PDFs of output quantities) and
by using the MCM. The PDFs resulting from different mea-
surement models are computed and uncertainties are eval-
uated. The expanded uncertainties obtained using the
different approaches are compared. These examples reveal
that the number and relative weight of influential input
quantities are not sufficient criteria to judge whether the
output quantity can be assumed to be normally distributed.
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