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a b s t r a c t

A low-order repetitive control (RC) design in continuous-time for nanopositioning applications is
presented. It focuses on achieving high performance and sufficient robustness to uncertainties. The
design is mainly applicable to analog implementation, but due to the exceptionally low order, it also
results in a fast and efficient digital implementation. Experimental results for an analog implementation
using a bucket brigade device (BBD), as well as a digital implementation, is presented. RC can provide fast
and accurate tracking of periodic reference signals, which is useful in many scanning probe microscopy
and nanofabrication applications.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nanopositioning stages often require control laws with the abil-
ity to track periodic reference signals with high accuracy, e.g. in
scanning probe microscopy and nanofabrication. Such signals
occur in applications such as raster scanning, pick-and-place oper-
ations, and mass-production of features [1–3].

Repetitive control (RC) is ideally suited for periodic signals. It is
based on the internal model principle [4]: tracking or rejection of
periodic exogenous signals can be achieved by embedding a peri-
odic signal model in the control loop. A periodic signal model
can be efficiently implemented using a time-delay inside of a pos-
itive feedback loop [5–7]. An important feature of RC is that as long
the overall control loop is stable the RC scheme is invariant to
changes in plant dynamics, subject to the accuracy of the signal
model. To guarantee stability, the control law filters must ensure
sufficient robustness. The requirement for robustness impacts on
the accuracy of the signal model, as one of the most common
methods to introduce robustness in RC is to limit the bandwidth
of the signal model [6]. However, any linear control law without
a periodic signal model, even a bandwidth-limited one, will not
achieve the same level of performance for periodic signals.

Recently, RC has been introduced for nanopositioning systems
[8–11]. For periodic references, due to the high degree of invari-
ance to changes in plant dynamics and the ability to reject periodic

disturbances, RC can address the challenges posed by
state-of-the-art mechanically stiff nanopositioner-designs. Such
systems often have lightly damped vibration modes, and use piezo-
electric actuators which introduces hysteresis and creep [12].
Hysteresis and creep are the main sources of uncertainty, as these
phenomena change the effective system gain dependent on input
voltage offset, range, and frequency [2]. Hysteresis is also the main
source of disturbance, as it generates harmonic distortion on the
input for a given stationary excitation signal [13]. The disturbance
is then periodic with the same fundamental frequency as the exci-
tation signal, and RC can then provide good rejection. Additional
uncertainty is introduced in applications, as it is typically required
to move payloads of various masses, thus the vibration modes and
the effective gain of the mechanical structure changes every time a
new payload is attached. Other effects that introduce uncertainty
are inherent variations in piezoelectric actuators, where the effec-
tive system gain changes due to temperature, depolarization, and
aging.

Robustness for RC is usually taken to mean robustness towards
uncertainties in the fundamental frequency of exogenous signals
(robust performance), or robustness towards plant modeling
uncertainty (robust stability). Methods to improve performance if
there is uncertainty or variation in the fundamental frequency of
exogenous signals have been proposed in [14–16,9]. Such methods
are not applicable in this work, as the reference signal period is
considered to be known and accurate and the main disturbance
is due to hysteresis which generates harmonic distortion depen-
dent on the reference signal [13].

http://dx.doi.org/10.1016/j.mechatronics.2015.07.006
0957-4158/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +47 402 44 954.
E-mail addresses: eielsen@itk.ntnu.no (A.A. Eielsen), gravdahl@itk.ntnu.no

(J.T. Gravdahl), kam.k.leang@utah.edu (K.K. Leang).

Mechatronics 30 (2015) 231–243

Contents lists available at ScienceDirect

Mechatronics

journal homepage: www.elsevier .com/ locate/mechatronics

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechatronics.2015.07.006&domain=pdf
http://dx.doi.org/10.1016/j.mechatronics.2015.07.006
mailto:   eielsen@itk.ntnu.no    
mailto:  gravdahl@itk.ntnu.no
mailto:kam.k.leang@utah.edu
http://dx.doi.org/10.1016/j.mechatronics.2015.07.006
http://www.sciencedirect.com/science/journal/09574158
http://www.elsevier.com/locate/mechatronics


Robustness towards plant uncertainty has been studied in
[6,7,17–20]. The most common method to introduce robustness
in RC is to limit the bandwidth of the signal model. This corre-
sponds to the modified RC system in [6], where a low-pass filter
is used to limit the bandwidth and hence relax the stability condi-
tion. A robust stability condition is found in [7], where an additive
uncertainty weight is considered. Model-matching techniques
from robust control theory [21] is applied in [17–19] to synthesize
robust control law filters suitable for RC. Model-matching is also
proposed in [6] for control law filters synthesis, but without con-
sidering robustness weights. In [20] robustness is introduced by
accounting for uncertainty via a worst-case plant frequency
response generated from measurements. An approximate
discrete-time plant inverse filter is then found using system iden-
tification techniques. Control law filter synthesis using
model-matching or system identification techniques are not suited
to the approach taken in this work, as there are constraints on filter
order and structure.

RC is very similar to iterative learning control (ILC) [22–25]. The
main difference between ILC and RC is that ILC is a finite time prob-
lem where the initial values of the states are reset between each
iteration. ILC can be applied to unstable systems and it does not
require convergence in the solution of the input signal sequence.
However, when applying RC it is not required to solve the initial
value problem for each iteration step and it can be implemented
using analog devices. For convenience, RC can also be plugged into
an existing feedback loop to enhance performance with minimal
changes to an existing control system [8].

1.1. Contribution

The aim of this work it to synthesize a low-order
continuous-time robust RC scheme which can yield high perfor-
mance and is suitable for analog implementation. This is achieved
using a robust damping and tracking control law in combination
with a plug-in type continuous-time repetitive control (RC)
scheme. Specifically, a robust stability criterion and a tuning proce-
dure for the RC scheme is proposed, and an inexpensive analog
implementation of the scheme is presented. This work is an
updated and expanded version of [26,27].

1.2. Outline

The lightly damped vibration modes and the hysteresis effect
present in many nanopositioning systems can degrade perfor-
mance and make it difficult to obtain a stable RC system [28]. A
modified integral control law [29] is therefore designed and used
to mitigate the effects of vibration modes and hysteresis. This kind
of control law can be described as a damping and tracking control
law. Examples of such control laws applied to nanopositioning sys-
tems can be found in [30–35]. Any of these control laws can pro-
vide an approximately flat frequency response for the
complementary sensitivity function [29], which is one of the fea-
tures used to reduce implementation complexity in the proposed
control scheme. The particular control law used in this work is cho-
sen because it provides the lowest order implementation and
incorporates the anti-aliasing and reconstruction filters needed in
the system to good effect.

The modified integral control law is combined with
continuous-time RC for tracking of periodic references. Robust sta-
bility is considered via the selection of a multiplicative uncertainty
weight. In order to reduce implementation complexity, the flat fre-
quency response feature is exploited by approximating the com-
plementary sensitivity function with an all-pole Butterworth
filter. A Butterworth filter is by definition a filter which provides
a maximally flat frequency response, or equivalently, uniform

sensitivity in the passband [36]. An optimization problem is solved
to find a DC-gain and a cut-off frequency for this Butterworth filter
that ensures robust stability with the given multiplicative uncer-
tainty weight. By using two all-pole filters, one for the approxima-
tion of the complementary sensitivity function and one to limit the
bandwidth of the signal model, the inverse of the approximation
combined with the low-pass filter produces a biproper transfer
function. The biproper transfer function can then be implemented
using a single filter with one input and two outputs, reducing
implementation complexity.

Thus, the overall control scheme has exceptionally low order;
simplifying the implementation process. A digital and an analog
implementation is presented. The digital implementation uses
standard digital signal processing (DSP) equipment, and the analog
implementation is realized using regular analog filters and a
bucket brigade device (BBD) [37–39], which provides the required
time-delay. The use of BBDs for RC have previously been investi-
gated [40,41], but using different control law structures and not
for motion control. The digital implementation serves as a refer-
ence implementation for the subsequent analog implementation.

Experimental results are presented to demonstrate the effec-
tiveness of the overall control scheme, where the proposed control
system is applied to a custom-designed piezo-based nanoposition-
ing system.

1.3. Assessment of experimental performance

In [29] several damping and tracking control laws have been
surveyed for a similar system as the one considered here.
Damping and tracking control laws typically only incorporate inte-
gral action, thus only providing asymptotic tracking for constant
references. One of the best performing methods in [29], synthe-
sized using model reference control (MRC), yielded a maximum
error (ME) of 16% and a root-mean-square error (RMSE) of 11%
for a 80-Hz triangle wave reference signal with 1-lm amplitude
when there was a dominant vibration mode at 1660 Hz. The corre-
sponding figures for the modified integral control law used in this
work applied to the system in [29] were an ME of 24% and an RMSE
of 20%. In this work, an ME of 12% and an RMSE of 12% was
achieved using the modified integral control law for a 25-Hz mod-
ified triangle wave reference signal with 13.5-lm amplitude when
there is a dominant vibration mode at 704 Hz.

When applying RC, the tracking performance is significantly
improved. In this work, the analog implementation achieved an
ME of 0.63% and an RMSE of 0.31% for a 50-Hz triangle wave refer-
ence signal with 15-lm amplitude when there is a dominant vibra-
tion mode at 704 Hz. This constitutes an improvement of two
orders of magnitude compared to the case when only applying a
damping and tracking control law.

Experimental results for a similar system using discrete-time RC
can be found in [11]. Comparing the results, the presented
continuous-time scheme will perform on par with the common
discrete-time RC implementation that uses high-order zero-phase
tracking error control (ZPETC) model-inversion and signal model
bandwidth limitation using zero-phase filtering [42,20]. The
discrete-time implementation in [11] achieved an ME of 0.83% and
an RMSE of 0.10% for a 40-Hz triangle wave reference signal with
5-lm amplitude when there is a dominant vibration mode at 520 Hz.

2. System description and modeling

2.1. Mechanical model

The nanopositioning stage used in this work is shown in Fig. 1,
where the serial-kinematic motion mechanism is designed such
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