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a b s t r a c t

The electromagnetic interaction forces between two noncoaxial circular coils have been previously ana-
lyzed. In the present study we revisit that solution and rederive these forces in a new functional form
which provides new insight. Specifically, we revisit the notion of a neutral plane, at a critical vertical sep-
aration, in which alignment forces identically vanish. To this end we present a new simplified 2D model
of the problem, in which it is easier to understand the nature of these forces. We show that our simplified
2D model captures the same response characteristics as in the more complex 3D problem of the interac-
tion between coils. We show the context and range of parameters in which a local neutral plane exists.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The electromagnetic interaction force between two conducting
coils is a fundamental problem which is relevant to electromag-
netic actuation [1–6] and may also be relevant to alignment pro-
cesses in assembly [7,8]. The aligning force between two
non-coaxial circular rings has been investigated by Kim et al. [9].
In that paper, the two components of the interaction force – the
aligning force (parallel to the rings plane) and the levitating force
(normal to the rings plane), were analyzed for the case of two con-
ducting rings of different diameters. It was suggested that at a crit-
ical vertical separation between the rings, the aligning force
vanishes for any given eccentricity, constituting a neutral plane
of zero aligning response. The physical nature of the interaction
forces between two rings, and the nature of its aligning and levitat-
ing components, is somewhat difficult to comprehend. Specifically,
the notion of a neutral aligning response seems nontrivial. This is
not only because of the rather complex geometry, but also because
of the elaborate functional form of the forces (it is not easy to
deduce the nature of the interaction forces from these functional
forms).

In this work we revisit the solution proposed by Kim et al. [9]
and present it in a newer more compact functional form. We thor-
oughly investigate the aligning and levitating forces for different
relative diameters, vertical separations, and different eccentricity.

To this end, we present a new simplified 2D model of the prob-
lem which provides new insight, and makes it easier to compre-
hend the effects of geometrical parameters that determine the

electromagnetic forces. We present these forces in a new graphic
form that maps-out positive/negative regions of the aligning and
levitating forces. Specifically, we revisit the notion of a neutral
plane, at a critical vertical separation, in which the aligning force
identically vanishes. With our simplified model we show the con-
text and range of parameters in which a local neutral plane does
exist.

We then map the interaction forces for the original 3D problem
of two conducting rings, and show the similarity of the two solu-
tions [10].

2. The electromagnetic forces between two conducting rings

The two conducting rings considered by Kim et al. [9] are pre-
sented in Fig. 1a. The origin of the Cartesian coordinate system is
located at the center of the bottom ring of radius qB, and the center
of the top ring of radius qT is located at a vertical separation z = Z
and radial eccentricity x = R. The bottom and top rings conduct cur-
rents in the clockwise direction IB and IT, respectively. Kim et al.
derived the interaction forces from the electromagnetic potential
of the system. Here we rederive the same equations by considering
the forces applied to the top conducting ring by the magnetic field
which is induced by the current in the bottom ring.

According to the Bio-Savart law, the magnetic flux density pro-
duced by the bottom ring at a general point in space ðx; y; zÞ
(Fig. 1b) is given by

BB ¼
l0IB

4p

Z
dlB � rB

jrBj2
ð1Þ

An infinitesimal vector in the direction of the current flowing in
the bottom ring is given by
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dlB ¼ qBdhB � ½sinðhBÞex � cosðhBÞey� ð2Þ

The vector between the current in this segment to a general
point in space ðx; y; zÞ is given by

rB ¼ ½x� qBcosðhBÞ�ex þ ½y� qBsinðhBÞ�ey þ zez ð3Þ

Substituting (2) and (3) into (1), we obtain the magnetic flux
density in the Cartesian coordinate system

BB ¼�
l0IBqB

4p

Z 2p

0

zcosðhBÞexþzsinðhBÞey�½xcosðhBÞþysinðhBÞ�qB�ez

fx2þy2þq2
Bþ z2�2qB½xcosðhBÞþysinðhBÞ�g

3=2 dhB

ð4Þ

Expressing this flux density using the Cylindrical coordinates
system er ; e/; ez and developing mathematically, we obtain:

BB ¼ �
l0IBqB

2p

Z p

0

zcosðhBÞer þ ½qB � rcosðhBÞ�ez

½r2 þ q2
B þ z2 � 2qBrcosðhBÞ�

3=2 dhB ð5Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

This is the magnetic flux density produced by the bottom ring,
at a general point in space with radial eccentricity r and vertical
separation z. In order to calculate the force acting between the
rings we integrate

F ¼ IT

Z
dlT � BB ð6Þ

The infinitesimal vector in the direction of the current in the top
ring is

dlT ¼ qT dhT � ½sinðhTÞex � cosðhTÞey� ð7Þ

The vector between the center of the bottom ring to a segment
of wire in the top ring is given by (Fig. 1a)

r̂ ¼ ðRþ qT cosðhTÞÞer þ qT sinðhTÞey þ Zez ð8Þ

The radial and vertical components of the distance between a
point on the top ring to a point on the bottom ring are

r ¼ jr̂ � Zezj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ q2

T þ 2qT R cosðhTÞ
q

; z ¼ Z ð9Þ

Substituting (5), (7) and (9) into (6) we may write the force
components in the following form

Fr ¼
l0IBITqBqT

4p

Z 2p

0

Z 2p

0

½qB�RcosðhBÞ�qT cosðhB�hTÞ�cosðhTÞ
D3=2 dhBdhT

ð10Þ

Fz ¼ �
l0IBITqBqT

4p

Z 2p

0

Z 2p

0

Z cosðhB � hTÞ
D3=2 dhBdhT ð11Þ

where D = Dcon + Decc. The radial force component (10) is the align-
ing force, and the vertical force component (11) is the levitating

force (it is quite trivial that F/ vanishes mathematically due to
symmetry).

The integrand denominator components are given by

Dcon ¼ q2
T þ q2

B þ Z2 � 2qBqT cosðhB � hTÞ ð12Þ

Decc ¼ RðRþ 2qT cosðhTÞ � 2qBcosðhBÞÞ ð13Þ

The term Dcon describes the denominator for no radial eccentric-
ity (i.e. when the rings are concentric DjR¼0 ¼ Dcon), and it is well
known in electromagnetic calculations associated with concentric
circular loops [11]. The term Dcon is essentially the distance between
a point on the bottom ring to a point on the top ring for concentric
rings. The different locations of the points on each ring are described
by the angles hB, hT. The term Decc describes the addition to the dis-
tance Dcon when the rings are eccentric with radial eccentricity R.

The terms for the aligning and levitating forces given by (10)
and (11), are compatible with Kim’s results (Eqs. (23) and (25) in
[9]). The expressions we present here are simpler in form and pro-
vide more insight. In our new formulation it is easier to identify the
effect of geometry on the different terms in the integrands.

The result demonstrates that the force depends on the radial
eccentricity R, vertical separation Z, the radii and the currents

Frnz ¼ FrnzðIB; IT ;qB;qT ;R; ZÞ ð14Þ

It is constructive to consider the system in terms of
non-dimensional variables

eF rnz ¼
p

4l0IBIT
Frnz; ~R ¼ R

qB þ qT
; eZ ¼ Z

qB þ qT
ð15Þ

Also it is convenient to define the ratio between the radii
as a non-dimensional variable, ~r ¼ qT=qB. In terms of these
non-dimensional variables the aligning and levitating
non-dimensional forces may be rewritten in the following form

eF r ¼
~r

16

Z 2p

0

Z 2p

0

½1� ~Rð1þ~rÞcosðhBÞ�~r cosðhB�hTÞ�cosðhTÞ
~D3=2

dhBdhT

ð16Þ

eF z ¼ �
~r

16

Z 2p

0

Z 2p

0

eZð1þ ~rÞ cosðhB � hTÞ
~D3=2

dhBdhT ð17Þ

where ~D ¼ ~Dcon þ ~Decc and the non-dimensional integrand denomi-
nator components are given by

~Dcon ¼ ½~r2 þ 1þ ð1þ ~rÞ2ðeZ2Þ � 2~r cosðhB � hTÞ� ð18Þ

~D~R ¼ ð1þ ~rÞ~R½ð1þ ~rÞ~Rþ 2ð~rcosðhTÞ � cosðhBÞÞ� ð19Þ

An interesting mathematical characteristic of the two rings con-
figuration is derived from its symmetry. It is trivial that if we
switch the position of the rings (rotating the x–y plane by 180

(a) (b)

Fig. 1. (a) Two conducting rings with radii qB; qT and currents IB; IT , respectively. (b) Schematic geometry for calculation of the magnetic flux density B produced by the
bottom ring.
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