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a b s t r a c t

In this paper, a novel method that integrates the LS-SVM and Empirical Mode Decomposi-
tion (EMD) is proposed to improve the performance of conventional EMD. The analyzed
signal is preprocessed with the weighted Least Squares Support Vector Machines
(LS-SVM) to suppress the interference of high-frequency intermittent components and
other non-Gaussian noises. The denoised signal is extended with LS-SVM rolling forecast
modeling. Next, the linear function is used to construct upper and lower envelopes of
the extrapolated data in order to determine the temporary mean envelope curve which
is then smoothed with the adaptive mapped LS-SVM to obtain the local mean curve. Signal
decomposition is self-adaptively performed to achieve IMFs through removal of the
smoothed local mean curve. The representative IMF containing fault information is
selected for demodulation analysis to identify the fault characteristics. The effectiveness
of the proposed method is verified by means of simulations and applications to bearing
fault diagnosis.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

For rolling bearing fault detection, it is expected that a
desired time–frequency analysis method should have good
resolution in both time domain and frequency domain.
Due to the limitation of Heisenberg–Gabor inequality, the
time–frequency transform based on Fourier transform
cannot achieve fine resolutions in both time domain and
frequency domain simultaneously. Empirical Mode
Decomposition (EMD) is an effective signal processing
technique that can self-adaptively decompose a non-
stationary signal into a sum of Intrinsic Mode Functions
(IMFs) according to the inherent characteristics of the
signal [1]. EMD has been used in mechanical system diag-
nosis applications such as bearing damage detection and
gearbox fault diagnosis [2–4]. However, in the practical

applications, aside from the lack of a perfect mathematical
foundation, the conventional EMD methodology also faces
the problems of mode mixing and end effects in algorithm
implementation and application. In order to address the
problems, a number of approaches have been undertaken,
such as the use of the alternate extrema for the envelopes
[5], the bandwidth criterion for IMF [6], the masking
signal [7,8], the heuristic search optimization approach
[9], doubly-iterative sifting [10], ensemble EMD [11],
centroid-based sifting [12].

Support Vector Machines (SVM) is a powerful
supervised machine learning tool introduced in framework
of statistical learning theory. It is used in a number of
applications for both noise removing and non-linear
regression. It has the ability to generalize well on unknown
data without the domain knowledge. Ref. [13] applied
SVRM (support vector regression machines) to the ana-
lyzed time series forecasting successfully to restrain the
end effects of EMD. However, the method in Ref. [13]
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maybe lose its effectiveness for the analysis of signal inter-
fered by high-frequency intermittent and non-Gaussian
noises which make it troublesome to select right training
data sets, leading to the inaccurate prediction result of
SVM. Therefore, the method in Ref. [13] lacks of the robust-
ness to noises. The same problem exists in Ref. [14]. Other
combinations of EMD and SVM [15–17] are just about the
post-processing the EMD results with SVM aiming to the
automatic fault classification of identification. They are
not about the improvement of EMD performance.

The above discussion shows that although some
approaches have shown promising results in improving
EMD performance, none has been widely accepted and
there is still room for improvement to reach the ultimate
goal of a completely reliable EMD method. In an effort to
achieve this goal we propose an improved approach in this
paper for bearing diagnosis combining EMD and LS-SVM
techniques. This paper is organized as follows: the next
section introduces EMD and LS-SVM. Afterwards, the pro-
posed method for the fault diagnosis of rolling element
bearing is developed. Next, we describe the simulation
and case studies performed to validate the method, fol-
lowed by our conclusions and some ideas for future work.

2. Basic principle

2.1. EMD method principle

The most appealing nature of EMD is its dependency on
the data-driven mechanism which does not require a priori
known basis unlike Wavelet and Fourier transform. IMFs
obtained by EMD are band-limited, which can represent
the features of signal and reserve the local information.
The EMD method identifies all the local maxima and min-
ima for a given input signal x(t) which are connected by
spline curves to form the upper and the lower envelopes,
eup(t) and elow(t), respectively. The mean of the two
envelopes is calculated as m(t) = [eup(t) + elow(t)]/2 and is
subtracted from the signal using q(t) = x(t) �m(t). An IMF
IMFi(t) is obtained if q(t) satisfies the two conditions of
IMF, these are, the number of extrema and number of zero
crossings is either equal or differs at most by one, and the
envelopes defined by the local maxima and minima are
symmetric with respect to zero mean. This procedure is
called as the sifting process. Then x(t) is replaced with
the residual r(t) = x(t) � q(t). If q(t) is not an IMF, x(t) is
replaced with q(t). The above process is repeated until
the residual satisfies the stopping criterion. At the end of
this process the signal x(t) would result in N IMFs and a
residue signal as in Eq. (1).

xðtÞ ¼
XN

n¼1

IMFnðtÞ þ rNðtÞ ð1Þ

where n and N represents the order and the total number
of IMFs respectively, and rN denotes the final residue. The
signal x(t) is decomposed such that the lower-order com-
ponents represent fast oscillation modes and higher-order
components represent slow oscillation modes. A detailed
explanation of the method is provided in Ref. [18].

While executing the EMD, there still exist some prob-
lems: (1) It is sensitive to the abnormal or false extrema
points caused by high-frequency intermittent noises, so
its decomposition lacks of the robustness to noises; (2)
The cubic spline fitting easily results in overshoot or
undershoot which lead to generation of a big error, thus
the original essential structure of IMF is easy to be
destroyed in EMD decomposition process; (3) The sifting
rule would render it impossible to decompose intrinsically
different modes whose frequencies fall in an octave.

2.2. LS-SVM principle

SVM is a novel machine learning technique based on a
statistical learning theory that aims at finding optimal
hyperplanes among different classes of input data or train-
ing data in high dimensional feature space, and new test
data can be classified using the separating hyperplanes.
Least Squares Support Vector Machines (LS-SVM) is an
extension of SVM. LS-SVM changes the traditional inequal-
ity constraints to equality constraints and regards the sum
of squared errors loss function as experience loss of
training set. It transforms solving quadratic programming
problem into solving linear equations problem. Compared
with SVM, LS-SVM has a faster solution speed and higher
solution accuracy. In the following sections, there will be
brief description to LS-SVM.

The training dataset is assumed to be {xi, yi}
(i = 1, 2, . . ., l) in which xi is the input vector and yi is its
corresponding target vector. Let zi = U(xi) denote the corre-
sponding feature space vector with a mapping function U
from the input space to high-dimensional feature space.
The hyperplane can then be defined as

w � zþ b ¼ 0 ð2Þ

where w is the weight vector defining the orientation of
hyperplane and b is the bias parameter. For efficient com-
putation purposes, in LS-SVM, one aims at minimization of
the following object function. Data samples are said to be
linearly separable if there exists (w, b), such that

Minimize : Jðw; eÞ ¼ 1
2

wT wþ 1
2

C
XN

i¼1

e2
i ð3Þ

Subject to: yi ¼ wTzi þ bþ ei i ¼ 1; . . . ;N.
The first term stands for the minimization of the Vapnik

Chervonenkis (VC) dimension, while the second one mini-
mizes the training errors (ei). C is the tradeoff parameter
between the terms. Define the following equation:

Lðw; b; e;aÞ ¼ Jðw; eÞ �
XN

i¼1

aifwTzi þ bþ ei � yig ð4Þ

With Lagrange multipliers ai e R. The conditions for
optimality are given by: o L/o w = 0, o L/o b = 0, o L/o ei = 0,
and o L/o ai = 0. After elimination of w and e, one can obtain

0 1T
v

1v Xþ I=C

" #
b

a

� �
¼

0
y

� �
ð5Þ

where y = [y1, y2, . . ., yN]T; 1v = [1, 1, . . .,1]T; a = [a1, a2,
. . ., aN]T; and Xi,j = K(xi, xj), for i, j = 1, 2, . . ., N. Here
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