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a b s t r a c t

Although the neurodevelopmental and genetic underpinnings of autism spectrum disorder

(ASD) have been investigated, the etiology of the disorder has remained elusive, and

clinical diagnosis continues to rely on symptom-based criteria. In this study, to classify

both control subjects and a large sample of patients with ASD, we used resting state

functional magnetic resonance imaging (rs-fMRI) and a neural network. Imaging data from

312 subjects with ASD and 328 subjects with typical development was downloaded from

the multi-center research project. Only subjects under 20 years of age were included in this

analysis. Correlation matrices computed from rs-fMRI time-series data were entered into a

probabilistic neural network (PNN) for classification. The PNN classified the two groups

with approximately 90% accuracy (sensitivity ¼ 92%, specificity ¼ 87%). The accuracy of

classification did not differ among the institutes, or with respect to experimental and

imaging conditions, sex, handedness, or intellectual level. Medication status and degree of

head movement did not affect accuracy values. The present study indicates that an

intrinsic connectivity matrix produced from rs-fMRI data could yield a possible biomarker

of ASD. These results support the view that altered network connectivity within the brain

contributes to the neurobiology of ASD.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Autism spectrum disorder (ASD) is characterized by the

impaired development of social interaction and communica-

tion skills and a restricted repertoire of activities and interests

(A.P.A., 1994). Although extensive efforts have been made to

create a neurodevelopmental model (Baron-Cohen, 2009;

Frith, 2001) and to identify disease-specific genes (Levy,

Mandell, & Schultz, 2009), ASD continues to be diagnosed

using symptom-based clinical criteria. The identification of

biomarkers with clear neural underpinnings in ASD would be

helpful in ensuring an early and accurate diagnosis as well as

an optimally effective treatment (Hill & Frith, 2003; Levy et al.,

2009). Structural and functional magnetic resonance imaging

has the potential to reveal brain abnormalities of ASD that

could be used as biomarkers of the disease.
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A critical step in using neuroimaging abnormalities as

biomarkers of ASD is applying a machine-learning algorithm

such as the support vector machine (SVM) and/or an artificial

neural network to the data (Orru, Pettersson-Yeo, Marquand,

Sartori, & Mechelli, 2012). Structural properties of the brain,

including cortical volume (Calderoni et al., 2012; Ecker, Rocha-

Rego, et al., 2010; Uddin et al., 2011; Varol, Gaonkar, Erus,

Schultz, & Davatzikos, 2012), thickness (Ecker, Marquand,

et al., 2010; Jiao et al., 2011, 2010; Sato et al., 2013), and white

matter integrity (Bloy et al., 2011; Ingalhalikar, Parker, Bloy,

Roberts, & Verma, 2011), have been used as features to clas-

sify control subjects and patients with ASD; however, to date,

these investigations have shown limited power of these

measures as classifiers.

Investigating brain network activity during the resting

state has emerged as a new method that eliminates the ca-

veats of task-based fMRI studies (Menon, 2011). In this

method, the fMRI signal is measured during the resting state

and the data is analyzed based on a connectivity approach

between subdivisions. To date, brain network activity during

the resting state has been investigated in subjects with ASD

and typical development in numerous studies (Assaf et al.,

2010; Barttfeld et al., 2012; Cardinale, Shih, Fishman, Ford, &

Muller, 2013; Di Martino et al., 2011; Di Martino, Zuo, et al.,

2013; Ebisch et al., 2011; Lai et al., 2010; Lynch et al., 2013;

Mueller et al., 2013; Murdaugh et al., 2012; Paakki et al., 2010;

Tyszka, Kennedy, Paul, & Adolphs, 2014; Weng et al., 2010;

Wiggins et al., 2011). Overall, intrinsic connectivity between

subdivisions of the brain is altered in patients with ASD

compared to controls (Muller et al., 2011; Uddin, Supekar, &

Menon, 2010).

In studies that have used intrinsic connectivity during the

resting state (Anderson et al., 2011; Barttfeld et al., 2012;

Murdaugh et al., 2012) or during passive viewing of movies

(Deshpande, Libero, Sreenivasan, Deshpande,&Kana, 2013) to

classify ASD and control subjects, small sample sizes have

limited the accuracy of the results. In a single study that used

large samples from the same image database as the present

study, the accuracy was as high as 60% (Nielsen et al., 2013). In

the present study, using a large dataset (n ¼ 640) obtained

from the public database (Di Martino, Yan, et al., 2014) and a

probabilistic neural network (PNN) algorithm, I report the

successful classification of resting state fMRI data between

subjects with ASD and subjects with typical development.

2. Materials and methods

2.1. Materials

The original imaging and demographic data were collected

from the Autism Brain Imaging Data Exchange (ABIDE) data-

base (http://fcon_1000.projects.nitrc.org/indi/abide/index.

html), which allows unrestricted usage for non-commercial

research purposes. Although the dataset included both

adults and children, only subjects under 20 years of age were

used in the present study. Brain images and related data from

312 subjects with ASD (male/female: 273/39) and 328 control

subjects with typical development (CTL, male/female: 267/61)

from 12 universities and research institutes were used. The

names and abbreviations of these institutes and scanning

parameters are listed in Table 1. The ethics committee of the

Nagoya University School of Medicine approved the usage of

this anonymous data for research purposes.

Autism was diagnosed according to both the Autism

Diagnostic Interview-Revised (ADI-R) (Lord, Rutter, & Le

Couteur, 1994) and the Autism Diagnostic Observation

Schedule (ADOS) (Lord, Rutter, DiLavore, & Risi, 1999) in

almost all cases, the exception being cases from one institute

where autism was diagnosed using only the DSM-IV-TR

(A.P.A., 1994). The CTL subjects were screened in clinical in-

terviews conducted by experts in child psychiatry; however, in

some cases, other questionnaireswere used. The details of the

diagnostic procedures and questionnaires used are listed in

Supplementary Table 1.

Demographic data for each group is shown in Table 2.

Subjectswere aged between 6 and 19 years. The full-scale IQ of

all subjects assessed was 41e148; however, no IQ data was

available for three subjects with ASD. Between-group com-

parisons weremade using unpaired t-tests (two-tailed) for age

and IQ, and chi-square tests for sex and handedness (statis-

tical threshold was set at p ¼ .05). Data on the medication

Table 1 e Scanning parameters and experimental settings in each site.

Institute MRI vendor TR (msec) TE (msec) FA (deg) Voxel size (mm) Volumes Time (m) Eyes

KKI Phillips 2500 30 75 3 � 3 � 3 156 6.5 o

LEU Phillips 1667 33 90 3.48 � 3.59 � 4 250 6.9 c

NYU Siemens 2000 15 90 3.75 � 3.75 � 4 180 6.0 o/c

OHSU Siemens 2500 30 90 3.75 � 3.75 � 3.8 82 3.4 o

OLIN Siemens 1500 27 60 3.43 � 3.43 � 4 210 5.3 o

PITT Siemens 1500 25 70 3.12 � 3.12 � 4 200 5.0 c

SDSU GE 2000 30 90 3.44 � 3.44 � 3.4 180 6.0 o

STAN GE 2000 30 80 3.12 � 3.12 � 4.5 180 6.0 c

TRIN Phillips 2000 28 90 3 � 3 � 3.5 150 5.0 c

UCLA Siemens 3000 28 90 3 � 3 � 4 120 6.0 o

USM Siemens 2000 28 90 3.43 � 3.43 � 3 240 8.0 o

YALE Siemens 2000 25 60 3.43 � 3.43 � 4 200 6.7 o

KKI, Kennedy Krieger Institute; LEU, University of Leuven; NYU, NYU Langone Medical Center; OHSU, Oregon Health and Science University;

OLIN, Olin, Institute of Living at Hartford Hospital; PITT, University of Pittsburgh School of Medicine; SDSU, San Diego State University; STAN,

Stanford University; TRIN, Trinity Centre for Health Sciences; UCLA, University of California, Los Angeles; USM, University of Utah School of

Medicine; YALE, Yale Child Study Center; FA; Flip angle, Time: Scan time, Eyes; eyes were open (o) or closed (c) during the scan.
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