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Transcranial direct current stimulation over the left
prefrontal cortex increases randomness of choice
in instrumental learning

Zsolt Turi a,*,1, Matthias Mittner b,1, Alexander Opitz a,1, Miriam Popkes a,
Walter Paulus a and Andrea Antal a

a Department Clinical Neurophysiology, University Medical Center, Georg-August University, G€ottingen, Germany
b Department of Psychology, University of Tromsø, Norway

a r t i c l e i n f o

Article history:

Received 6 January 2014

Reviewed 1 April 2014

Revised 13 May 2014

Accepted 26 August 2014

Action editor Jacinta O’Shea

Published online 11 September 2014

Keywords:

Transcranial direct current

stimulation

Dorsolateral prefrontal cortex

Probabilistic learning task

Exploration

Exploitation

Working memory

a b s t r a c t

Introduction: There is growing evidence from neuro-computational studies that instru-

mental learning involves the dynamic interaction of a computationally rigid, low-level

striatal and a more flexible, high-level prefrontal component.

Methods: To evaluate the role of the prefrontal cortex in instrumental learning, we applied

anodal transcranial direct current stimulation (tDCS) optimized for the left dorsolateral

prefrontal cortex, by using realistic MR-derived finite element model-based electric field

simulations. In a study with a double-blind, sham-controlled, repeated-measures design,

sixteen male participants performed a probabilistic learning task while receiving anodal

and sham tDCS in a counterbalanced order.

Results: Compared to sham tDCS, anodal tDCS significantly increased the amount of mal-

adaptive shifting behavior after optimal outcomes during learning when reward proba-

bilities were highly dissociable. Derived parameters of the Q-learning computational model

further revealed a significantly increased model parameter that was sensitive to random

action selection in the anodal compared to the sham tDCS session, whereas the learning

rate parameter was not influenced significantly by tDCS.

Conclusion: These results congruently indicate that prefrontal tDCS during instrumental

learning increased randomness of choice, possibly reflecting the influence of the cognitive

prefrontal component.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In most everyday situations, we constantly have to adapt and

optimize our behavior to cope with various, often conflicting,

demands and constraints posed by each specific environment.

An important aspect of adaptive behavior is the capability of

choosing those actions that lead to a high amount of cumu-

lative reward. One way to achieve this goal is by successively
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generating predictions about the consequences of each action.

Generating and using these predictions to guide behavior is

known as instrumental learning (Dayan & Balleine, 2002).

Instrumental learning in humans recruits multiple, func-

tionally interacting and parallel brain systems (for reviews see

Dolan & Dayan, 2013; Samson, Frank, & Fellous, 2010); these

involve a striatal reinforcement learning (RL) component and a

cognitive, prefrontal control component (Collins& Frank, 2012;

Daw, Niv, & Dayan, 2005; Daw, O'Doherty, Dayan, Seymour, &

Dolan, 2006), also known respectively as the model-free and

model-based controls of instrumental learning (Daw,

Gershman, Seymour, Dayan, & Dolan, 2011; Daw et al., 2005;

Wunderlich, Smittenaar, & Dolan, 2012). The low-level RL (or

model-free) component is characterized by computational ri-

gidity and it requires a large number of learning trials to

gradually integrate the long-termprobability of reinforcement

values in response to probabilistic reward associations (Frank,

Moustafa, Haughey, Curran, & Hutchison, 2007).

The high-level cognitive (or model-based) component,

driven by the prefrontal system, has greater computational

flexibility as it dynamically computes the policy to optimize

behavior by evaluating the instrumental requirements of the

decision situation (Daw et al., 2006). On the one hand, this is

achieved by actively maintaining the reinforcement history in

working memory (WM) which permits fast goal-directed de-

cisions, albeit with the restriction of a limited capacity (Collins

& Frank, 2012; Frank, et al., 2007). On the otherhand, functional

neuroimaging evidence also suggests that the prefrontal sys-

tem controls adaptive exploration (Daw et al., 2006). Further

evidence also indicates the role of prefrontal involvement

specifically, as individual genetic differences in regulating

prefrontal dopamine (DA) Catechol-O-methyltransferase

(COMT) rs4680 single nucleotide polymorphism has an

impact on exploratory behavior but not on the level of striatal

DA (Frank, Doll, Oas-Terpstra, & Moreno, 2009).

Nevertheless, genetic studies are correlational in nature

and a more direct demonstration of the involvement of the

prefrontal component in cognitive control in instrumental

learning requires a focal interference with prefrontal regions.

Transcranial direct current stimulation (tDCS) has the poten-

tial to temporarily shift neuronal membrane potentials of a

given neuronal population by passing a low-intensity elec-

trical current through the brain (Nitsche & Paulus, 2000).

These physiological effects have been linked to changes in a

wide range of cognitive functions, including those that are

related to the prefrontal cortex, such as WM (e.g., Zaehle,

Sandmann, Thorne, J€ancke, & Herrmann, 2011) or prototype

learning (Ambrus et al., 2011).

Modeling studies investigating the tDCS-induced current

profile characteristics indicate that the effect of tDCS, at least

from electrodes in close spatial proximity, is primarily limited

to the neocortex (Datta, Elwassif, Battaglia, & Bikson, 2008;

Faria, Hallett, & Miranda, 2011), although tDCS may have the

ability to remotely activate deeper brain structures, such as

the striatal system (Chib, Yun, Takahashi, & Shimojo, 2013).

The commonnotion that anodal tDCS leads to an increase and

cathodal tDCS leads to a decrease in neuronal excitability in

the brain area underneath the electrode have been challenged

by recent evidence (Reato et al., 2013). First, the electric field

induced by tDCS can both de- and hyperpolarize within the

same gyrus (Reato et al., 2013) and second, different types of

neurons are differentially modulated depending on their

morphology and axonal orientation (Radman, Ramos,

Brumberg, & Bikson, 2009). Hence, a simple mechanistic

relation between polarity and expected behavioral changes

may be difficult to establish. Indeed, recent evidence suggests

that tDCS has less consistency in polarity effects in cognitive

tasks compared to basic motor functions (Jacobson,

Koslowsky, & Lavidor, 2012).

The aim of the present experimental work has been to

study, which component of instrumental learning was influ-

enced by prefrontal tDCS by evaluating the effect of anodal

tDCS on behavior as measured by accuracy and computa-

tional model parameters. Advances in computational

modeling of RL using Q-learning algorithms allow distinct

processes to be modeled in detail. This entails the ability to

derive information about how performance is affected by

specific behavioral influences or strategies by fitting the RL

model to behavioral data (e.g., Frank et al., 2009).

In the classical model we employed in this study (Jocham,

Klein, & Ullsperger, 2011), the learning rate parameter a re-

flects the impact of the prediction error (i.e., the difference

between the previous outcome estimate and the actual esti-

mate after a certain action). Larger a values reflect trial-to-trial

fluctuations (a recency effect), whereas lower values indicate

a gradual value integration and more stable value estimation

(Frank et al., 2007). If prefrontal anodal tDCS biases partici-

pants to rely more on the WM component, we expected to

observe a trial-to-trial behavioral adjustment (i.e., change of

decision after negative response) during learning and an

increased a value. In contrast, if anodal tDCS compels par-

ticipants to rely less on the WM component, then a lower a

value and less trial-to-trial behavioral adjustment will be

observed e which would increase outcome-dependent

exploitation of the better symbol. In addition, the b param-

eter, also known as the “temperature” or “noise” parameter,

reflects the learners' bias towards either exploitation (i.e.,

choosing the better option in case of lower b values) or

exploration (i.e., choosing the items more randomly; higher b

values) (Frank et al., 2007; Jocham, et al., 2011). This model is

designed to capture behavior in a probabilistic environment

where not only the expected value (determined by integrating

past outcomes with learning rate a) determines the decision,

but choices are also characterized by intrinsic randomness,

reflected in the noise parameter b (Beeler, Daw, Frazier, &

Zhuang, 2010). If anodal tDCS affects exploration and in-

duces randomness in choices, participants will demonstrate

increased shifting behavior (i.e., a tendency to change, rather

than repeat a response to the same stimulus) and a decreased

preference for symbols that are associated with the higher

reward probability, reflected by higher b values.

2. Material and methods

2.1. Participants

Sixteen right-handed, healthy, native German-speaking par-

ticipants took part in the study (mean age of 22.9 ± 2.2 years).

In order to avoid menstrual cycle-dependent level changes of
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