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a b s t r a c t

The necessity recurrently comes up to align a strapdown inertial navigation system (SINS)
in a moving vehicle to avoid a long run-up of the inertial system before a start or launch
command is issued. This in-motion alignment is therefore achieved by integrating SINS
data with some external aiding source such as the Global Positioning System (GPS) by
using some form of measurement matching method. Consequently, this paper illustrates
a reliable in-motion alignment scheme for a low-cost strapdown inertial measurement unit
(SIMU) using a consistent and robust Kalman filter (RKF) structure. An error model of the
SINS is derived and the state vector comprises attitude, velocity, position and sensor errors.
Velocity information from the GPS with maneuvering is employed as a measurement to the
filter. Experimentation results show that the proposed filter is less sensitive to impulsive
noise and gives better estimates of the navigation parameters.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Aligning a strapdown inertial navigation system (SINS)
sets up a relationship among coordinates of the body and
a local level navigation reference frame. The initial align-
ment of the SINS is completed prior to the vehicle’s motion.
On the other hand, this initialization method necessitates
some considerable amount of time and the vehicle must
be in static condition. For a time, there is not adequate time
to bring the vehicle to a standstill at the starting point.
Moreover, after the initial alignment, the resulting naviga-
tion states errors grow up due to initialization and sensor
inaccuracies. Consequently, in large navigation errors be-
cause of the poor orientation or the growing sensor error,
SINS often needs to be re-aligned by correcting for naviga-
tion states [1–3]. Accordingly, it is induced to build up the
in-motion orientation scheme.

The navigation states for in-motion orientation can also
be acquired by integrating the SINS data with an indepen-
dent navigation data, such as the Global Positioning Sys-

tem (GPS). Furthermore, in-motion orientation entails
putting together the SINS error equations with the sensors’
errors. These errors can be developed in the navigation sys-
tem states via a variety of sources. The calculated states for
the initial values will by no means precisely equal the ac-
tual navigation states. For that reason, it is significant to
comprehend the dynamic behavior of the navigation sys-
tem errors [4–7].

The Kalman filter is an accepted tool in managing estima-
tion problems [8,9]; however, its optimality critically de-
pends on the linearity. It has set up remarkably expansive
range of applications, not only for estimating the state of a
dynamic system in the presence of process and observation
noise, but also for concurrently estimating model parame-
ters. On the other hand, the Kalman filter goes wrong in
the presence of outliers [10]. Even unusual happenings of
abnormally large observations severely degrade its perfor-
mance, resulting in poor state estimates and worthless con-
clusion. A robust version of the Kalman filter would have to
satisfy two objectives: be as nearly optimal as possible when
there are no outliers; and be resistant to outliers when they
do occur [11,12]. Robustness of the alignment algorithm is
a stringent requirement. In order to realize the accuracy,
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rapidness, and robustness of the in-motion alignment filter
design, innovative concept and an efficient technique is
brought together to solve the underlying problem.

Systems that rely on high quality sensor data are highly
susceptible to observation or measurement that lies outside
some overall pattern of distribution [13]. While a data from
sensors are effortlessly interpretable in their noise charac-
teristics, other sensors such as visual systems, the GPS de-
vices and sonar sensors are frequently endowed with
measurements settled with uncertainties. Accordingly,
robust, consistent handling and barring of uncertainties is
vital so as to process these kinds of data. Therefore, in this
paper, interest lies in making the Kalman filter more consis-
tent and robust to the uncertainties in the observations.

The information such as position, velocity and attitude
obtained from the SINS, composed of gyro and accelerom-
eter, is very accurate for short time intervals. However,
because of gyro characteristics, the system drifts at a slow
rate. All INS information has errors that grow slowly with
time, and errors are unbounded. Therefore, those errors
must be removed by using external measurement with
the long-term accuracy. In this proposed effort, it is
presumed that merely initial position is set by the GPS
navigation data and initial orientation errors are small.
Fig. 1 depicts the conceptual arrangement for the in-mo-
tion alignment problem.

It is well known reality that the Kalman filter state esti-
mate is optimal when the system and measurement noises
are both Gaussian, where optimal means minimum mean-
squared error among all linear and non-linear filters. When
the measurement noise has a contaminated normal or
other heavy-tailed non-normal distribution, the realized
values of noise will contain uncertainties and hence so will
the observations [14]. Since the Kalman filter is linear, such
uncertainties can have an arbitrarily adverse effect on the
state estimate. A single uncertainty at time step k0 can
spoil not only the estimate x̂k0

but also many of the subse-
quent estimates of the state vector.

In the in-motion alignment application, it will be fairly
essential to have good robust substitutes available. Conse-
quently, this problem provides motivation for determining
how to design robust Kalman filter and the pursuit of this
goal is initiated in this paper.

2. Robust Kalman filtering

The key setback of Kalman filter is the divergence
caused by the inexact depictions of system equations and
its statistic properties, plus the divergence caused by
observations. Attempts have been made to robustify the
operation of Kalman filtering [11].

The weighted least-squares criterion employed in the
Kalman filter derivation is [15]

J ¼ ðzi
k � HxkÞR�1ðzi

k � HxkÞ þ ðxk � �xkÞT P�1ðxk � �xkÞ ð1Þ

The standard derivation of the Kalman filter minimizes
Eq. (1) but unluckily does not spell out how the measure-
ment noise covariance is to be found. A familiar option is
to employ a constant matrix or even a constant scalar.
Making it constant though decreases the Kalman filter
estimates to be standard least-squares estimates. It is
recognized that least-squares estimation is very vulnerable
to outliers or gross errors, i.e., data points that lie far-off
from the bulk of the observed data [16]. For instance, in

Nomenclature

B noise input matrix
Cn

b matrix for transformation between b and
n-frame

D diagonal matrix
G diagonal matrix
H measurement sensitivity matrix
I identity matrix
K Kalman gain matrix
P state covariance matrix
Q process noise covariance matrix
R measurement noise covariance matrix
0 zero matrix
�f specific force vector
In innovation vector
�r position vector
�v velocity vector
�# measurement noise vector

�we gyros’ white noise along x, y and z axes
�wr accelerometers’ white noise along x and y axes
�x state vector
�z measurement vector
c threshold parameter
h height above mean sea level
J cost function
Rk radius of curvature of the reference ellipsoid in

the east–west direction
Ru radius of curvature of the reference ellipsoid in

the north–south direction
xie Earth’s rate with respect to i-frame
u geodetic latitude
j significance level of the test
U state transition matrix
k terrestrial longitude from Greenwich
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Fig. 1. SINS/GPS loose integration for in-motion alignment.
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