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a b s t r a c t

A fuzzy linear state estimation model is employed, which is based on Tanaka’s fuzzy linear
regression model, for modeling uncertainty in power system state estimation. The estima-
tion process is based on uncertainty measurements as well as uncertainty parametric. The
uncertain measurements and the parameters are expressed as fuzzy numbers with a trian-
gular membership function that has middle and spread value reflected on the estimated
states. The proposed fuzzy model is formulated as a linear optimization problem, where
the objective is to minimize the sum of the spread of the states, subject to double inequal-
ity constraints on each measurement. Linear programming technique is employed to
obtain the middle and the symmetric spread for every state variable. The estimated middle
corresponds to the value of the estimated state, while the symmetric spreads represent the
tightest uncertainty interval around that estimated states. For illustrative purposes, the
proposed formulation has been applied to various test systems such as, 4-bus, 6-bus, IEEE
30-bus, IEEE 39-bus, IEEE 57-bus and IEEE 118-bus. Furthermore, an assessment of the
time convergence of the proposed method has been carried out to demonstrate the appli-
cability of the proposed estimator as an on-line tool for estimating the uncertainty bounds
in power system state estimation.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Having an accurate picture of the state of a system is an
important part of the system operations. While a simple
SCADA (Supervisory Control and Data Acquisition) system
has the ability to provide the system operators with raw
information about the system operation conditions, only
a state estimator has the ability of filtering the information
to supply a more accurate picture of the status of the
system.

The conventional purpose of state estimation is to re-
duce the effect of measurement errors by utilizing the
redundancy available in the measurement system. In par-
ticular, the objective is to reduce the variance of the esti-
mates and improve their overall accuracy. The other
major objectives of state estimation methods include:

detection of gross errors, detection of invalid topological
information and detection of model parameter errors.

If the inaccuracy (or error) in the measurements, for a
given estimator, is modelled by some random probability
distribution function, then the set of feasible estimates
can also be modelled by a probability distribution function.
These estimators are, therefore, probabilistic in nature. In
fact probability theory is generally utilized to handle inac-
curacy. Due to the fact that statistics of the measurement
errors are difficult to be probabilistically characterized in
practice, imprecision in error modelling cannot be equated
with randomness, [1], and instead can be associated with
fuzziness [2]. Thus, fuzzy theory can satisfactorily be de-
ployed in such circumstances to overcome this limitation
and address various uncertainties in the modelling of such
statistics. That is particularly due to its ability in handling
uncertainties and vagueness associated with the observa-
tion errors. Generally, in the context of state estimation,
fuzzy estimators are possibilistic in nature. If the observa-
tion errors are assumed to be fuzzy due to uncertainty that
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is inherently present in the system, then the estimates are
assumed to be a range of possible values. Consequently, in
such situations, it is desirable to provide not just a single
‘optimal’ estimate of each state variable but also an uncer-
tainty range within which we can be assured that the ‘true’
state variable must lie. This is attainable by utilizing some
a fuzzy function to represent the estimates as fuzzy esti-
mates with their associated uncertainty ranges as opposed
to crisp estimates (single point only) produced by the con-
ventional estimators [3].

The main theme of this paper is to model the uncertain-
ties associated with the measured quantities in a way that
defines an interval (range) with respect to their nominal
values. The range is governed by the tolerance, of the mea-
suring instrument (a quantification of accuracy usually
provided by the manufacturer) and other factors that are
known to have direct effects on network mathematical
model being used in the estimation procedure. By imple-
menting the proposed fuzzy linear techniques the confi-
dence interval (or bounds) of the state variables can be
computed. Hence, this study presents an estimator based
on fuzzy linear regression formulation for estimating the
uncertainty interval around the system state variables.
This estimator is based on Tanaka’s fuzzy linear regression
formulation. The uncertainty is expressed in both
measurements and network parameters in a unified fuzzy
model. The main objective is to minimize the fuzziness in
the estimated states. This can be achieved by minimize
the sum of spreads of all fuzzy states, subject to double
inequality constraints on each measurement to guarantee
that the original membership is included in the estimated
membership. Linear programming has been employed to
obtain the middle and the symmetric spread of every state
variable. The estimated middle corresponds to the value of
the estimated state, whereas the symmetric spreads in the
membership functions of the state variables represents
the uncertainty interval around that estimated state. Thus,
the primary goal is to minimize the sums of the uncertain-
ties around the states.

2. Uncertainty and state estimation

Schweppe [4] introduced the concepts of uncertainty in
the general context of engineering analysis, estimation and
optimization. In [4] the concept of unknown-but-bounded
errors for modelling uncertainty in estimation problems
was introduced. Measurements are assumed to be inexact
and have errors that are unknown but fall within a
bounded range.

These concepts have been extended and developed re-
cently and have been applied by a number of researchers.
Bargiela and Hainsworth [5] introduced bounds on the
measurements, with the intention to increase the robust-
ness of estimation. Brdys and Chen [6], developed a tech-
nique based on bounded states, and they introduced the
term Set Bounded State Estimation (SBSE). Nagar et al.
[7] applied concepts from robust control theory and al-
lowed for uncertainty in both the parameters and the mea-
surements. The uncertainty is isolated with the use of a
Linear Fractional Transformation (LFT), which enables the
preservation of the structure of the uncertainty and allows

for a separate manipulation of the nominal and uncertain
part. A Linear Matrix Inequalities (LMI) [8] approach is
then used to solve the problem to obtain the upper and
lower confidence bounds [9].

In power system state estimation, inequality con-
straints have been applied in optimization to deal with
uncertainties. In [10], inequality constraints are employed
in a LAV estimator for handling uncertainty in pseudo-
measurements, since they are not measured but are known
to vary within bounded intervals. An inequality con-
strained LAV estimator based on penalty functions, was
formulated in [11] to estimate states of external systems.
A parameter-bounding model derived from bounded noise
measurements was used in [12] with a reformulated con-
strained WLS, to handle unmeasured loads in the system.

Al-Othman and Irving have introduced in [13–15] dif-
ferent methods for estimating the uncertainty interval
around the system state variables. One method is based
on using a two-step method is proposed for estimating
the uncertainty interval around the system state variables.
The first step uses weighted least-squares (WLS) as a point
estimator to compute the expected values of the state vari-
ables. A linear programming formulation is then utilized to
find the tightest possible upper and lower bounds on these
estimates [13]. The linear formulation was, however, lim-
ited to modelling uncertainty only in the measurements
which was due to meters inaccuracies, when in fact other
elements (inaccuracies of the network mathematical mod-
el) can indeed contribute to the uncertainty. As an exten-
sion, authors in [14] have introduced another uncertainty
analysis method in which the uncertainties are expressed
in both measurements and network parameters. The
uncertainties in [14] were assumed to be known and
bounded. The problem is formulated as a constrained
non-linear optimization problem. To find the tightest pos-
sible upper and lower bounds of any state variable, the
problem is solved by Sequential Quadratic Programming
(SQP) techniques. In [15] authors have conducted a com-
parison study of both methodologies presented in [13,14]
in terms of accuracy in estimating the uncertainty interval
with various redundancy levels. The study established that
both methods provided almost identical bounds estimates.
Also, the study showed that based on CPU execution time
analysis WLS-LP was found to be faster than the non-linear
method.

The main drawback in those formulations was the ma-
jor computational burden of the process which arises from
the need to perform two (LP) or two (SQP), depending on
the formulation used, solutions for every uncertainty inter-
val sought. For example, minimizing a particular state var-
iable of interest, subject to all the measurement inequality
constraints, provides the lower bound on that state vari-
able. Likewise, maximizing that state variable, again sub-
ject to all the measurement inequalities, provides the
upper bound for that state. Consequently, for real world
large electrical networks that scenario introduces a signif-
icant amount of computation and CPU time, which may
ultimately question the practicality of those formulations.

The proposed fuzzy linear state estimator (FLSE) has an
attractive feature that combats the above drawback. The
proposed (FLSE) computes the interval for all states simul-
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