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A B S T R A C T

Lesion-deficit mapping remains the most powerful method for localising function in the human brain. As the
highest court of appeal where competing theories of cerebral function conflict, it ought to be held to the most
stringent inferential standards. Though at first sight elegantly transferable, the mass-univariate statistical fra-
mework popularized by functional imaging is demonstrably ill-suited to the task, both theoretically and em-
pirically. The critical difficulty lies with the handling of the data's intrinsically high dimensionality. Conceptual
opacity and computational complexity lead lesion-deficit mappers to neglect two distinct sets of anatomical
interactions: those between areas unified by function, and those between areas unified by the natural pattern of
pathological damage. Though both are soluble through high-dimensional multivariate analysis, the con-
sequences of ignoring them are radically different. The former will bleach and coarsen a picture of the functional
anatomy that is nonetheless broadly faithful to reality; the latter may alter it beyond all recognition. That the
field continues to cling to mass-univariate methods suggests the latter problem is misidentified with the former,
and that their distinction is in need of elaboration. We further argue that the vicious effects of lesion-driven
interactions are not limited to anatomical localisation but will inevitably degrade purely predictive models of
function such as those conceived for clinical prognostic use. Finally, we suggest there is a great deal to be learnt
about lesion-mapping by simulation-based modelling of lesion data, for the fundamental problems lie upstream
of the experimental data themselves.

1. Introduction

In common with all scientific inference, the fidelity of lesion-deficit
mapping depends on the quality of the source data and the validity of
the models applied to it. Though equally important, the two aspects are
sharply distinct: a deficit in neither is remediable by an excess of the
other. Whereas a good model may be improved by better data, a de-
fective model is often irredeemably so. The validity of a model is judged
by hard, logico-mathematical criteria, the quality of data by softer,
empirical opinion. Inferential failure resulting from poor data tends to
be graceful, proportionate with the degree of data corruption; by con-
trast, model errors may have catastrophic consequences even when
seemingly minor. Worse, failure from a defective model is often silent,
cloaked in superficially attractive significance values that conceal fatal
biases in the inference repetition can only entrench. Where no other
inferential technique is stronger, such systematic errors may easily
persist indefinitely.

Why do we need reminding of these statistical platitudes? The ha-
zards of modelling are greatest where the complexity of the system
under study is highest, as is archetypally true of the brain. For our

purposes it suffices to define complexity as the minimum number of
dimensions required to predict one state of a system from another: its
intrinsic dimensionality. If our models cannot be commensurately com-
plex—for reasons of intellectual opacity or computational tractabil-
ity—it is tempting aggressively to simplify them, for then the un-
modelled signal superficially resembles noise. But if the residual
variance retains appreciable structure, the inference will be distorted in
ways the simplicity of the model merely conceals from view. The in-
evitable inferential distortion aside, the more non-stochastic variability
the model does not explain, the weaker its explanatory power, and—of
course—its practical, clinical utility.

So how do we determine the correct dimensionality? A perfect an-
swer is impossible, for it assumes precisely the knowledge our models
are deployed to acquire. But we can examine the grounds for an in-
formed supposition, and we can also explicitly test the consequences of
adopting one solution over another. Here we give the empirical and
conceptual grounds for our view on the necessary dimensionality, and
go on to outline the explicit tests one ought to conduct to confirm or
infirm it. Although this is certainly not the only important methodo-
logical concern in lesion-deficit mapping, we dwell on it at length here
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because it has received so little of the attention it requires.

2. The dimensionality of anatomical inference in the brain

Let us first clarify how the dimensionality of an inferential model is
determined. Formal lesion-deficit mapping began with taking the
overlap of a set of lesions and contrasting the peak with that derived
from another, control set of patients (e.g. (Robertson et al., 1988)).
Such a comparison is produced by a simple voxel-wise operation that
ignores any anatomical relationship but that between homologous
voxels across the two groups. This is mass-univariate inference, even if
it was not called so at the time, for the contribution of each voxel is
independently quantified by its own, univariate test, whether implicit
or explicit. By replacing simple subtraction with a formal statistical test,
voxel-wise lesion-symptom mapping (VLSM) and kindred techniques
add a measure of confidence to the inference at each voxel, leaving the
independence assumption untouched, and the inference univariate
(Bates et al., 2003; Chen and Herskovits, 2010; Damasio et al., 1996;
Karnath et al., 2004; Rorden et al., 2007). Additional variables may be
added to the voxel-wise statistical test—various behavioural covariates,
for example—making it multivariate, but not from the critical per-
spective of the anatomy, for that is still modelled as a set of independent
locations, evaluated over multiple statistical tests run at each voxel in
isolation from every other. So this is still mass-univariate anatomical
inference, even if its behavioural dimensionality may be expanded.

Now two manoeuvres here commonly escalate the anatomical di-
mensionality. The most common is the addition of lesion volume as a
covariate, a crude index of damage at other voxels (Karnath et al.,
2004). This attempts to capture the effect on behaviour of the global
change in available brain substrate, independently of anatomical loca-
tion, reasoning that parcelling out such anatomically non-specific ef-
fects will increase sensitivity for the anatomically specific effects of
interest. Less common is the use of Gaussian smoothing, which changes
the value of a voxel on the assumption is relation to its neighbours is
adequately described by a random Gaussian field (Kimberg et al.,
2007). Since neither is capable of conveying any substantial anatomical
detail, most would still regard such models as mass-univariate. More-
over, we still have one model per voxel, and therefore as many models
as there are estimated voxels in the brain.

An analysis becomes anatomically multivariate where the statistical
model incorporates many anatomical variables, indexing the presence
or absence of damage to different parts of the brain together (Chen et al.,
2008; Chen and Herskovits, 2015; Keinan et al., 2004; Mah et al., 2014;
Rondina et al., 2016; Smith et al., 2013; Toba et al., 2017; Yourganov
et al., 2016; Zhang et al., 2014). The dimensionality of such models
depends on the number of such variables and their properties. Where
the variables are correlated, the intrinsic dimensionality will be less
than their number, but this is usually something to be established by the
analysis itself, implicitly in the inferential model, or explicitly in a
preceding dimensionality reduction step. Either way, each inferential
model now covers all or a substantial part of the brain, leaving us with
one or few models per brain where a multiplicity of voxels describe a
large number of dimensions per model.

Naturally, the dimensions of behaviour and anatomy are bound to
interact, and a model may be critically deficient in either or both. Our
focus here is on the anatomical not because the others should be ne-
glected but because the anatomical near-universally have.

3. Two determinants of dimensionality: brain and lesions

It is natural to think of anatomical factors as pertaining only to the
functional architecture of the brain. But in lesion-deficit mapping this is
only one side of the coin: there is a second anatomical dimensionality to
consider, that arising from the lesion architecture. We need to examine
each in turn.

3.1. Brain dimensionality

That Lego® is not helpfully metaphorical of the brain's functional
architecture is increasingly recognized in the emphasis on highly dis-
tributed operations subserved by complex, dynamic functional net-
works (Sporns et al., 2005). Both disruptive and correlative data un-
equivocally point to an underlying neural organisation in which
complex interactions between areas determine the observed behaviour
(Young et al., 2000). Such interactions may be non-monotonic, re-
flective of neural relations that could just as easily be competitive as
collaborative. They are—moreover—bound to be adaptive, varying
across both time and individuals. An entire field of clinical neu-
roscience—functional neurosurgery—richly illustrates these truths in
each and every patient, where disruption of one area of the brai-
n—optimised both within and across patients—is used to improve the
function of the brain as a whole (Jha and Brown, 2011; Johnson et al.,
2008).

A satisfactory model of a lesioned brain must therefore not only
model the individual functions of the affected areas but their—poten-
tially highly complex—interactions. The syndrome of visuospatial ne-
glect offers a striking example of this: neglect caused by damage to
inferior parietal areas may not only not be exacerbated by damage to
the contralateral frontal eye field but wholly reversed by it (Vuilleumier
et al., 1996). It is obvious that in evaluating the lesion-deficit re-
lationship in a patient we must here model the presence and absence of
damage at both loci, together, and if this is true of this particular pair it
may be true of any combination of areas, across the entire brain (Price
and Friston, 2002; Zavaglia and Hilgetag, 2016).

The optimal lesion-deficit model, then, is one in which the integrity
of each functionally homogeneous location in the brain is a separate
variable. Since no wholly convincing definition of functional homo-
geneity is currently available (pace (Glasser et al., 2016)), our limit
becomes practical: such anatomical parcellation of the brain as our
tools can provide, minimally the voxel size of the imaging acquisition.
Anything short of this will miss interactions at a finer level of anato-
mical organisation. Even with voxel sizes of remarkable coarse-
ness—8 mm isotropic—this leaves us with several thousand variables
per brain: a high-dimensional model, certainly in proportion to the
number of patients included in the typical lesion-deficit study.

3.2. Lesion dimensionality

The variable expansion we are discussing here is driven by the di-
mensionality of the functional architecture. But in lesion-deficit map-
ping there is a second, independent dimensionality to consider: that of
the lesion architecture (Mah et al., 2014, 2015). Where lesions over-
lap—and are generally larger than the minimal size of functionally
homogeneous areas—the lesion-deficit relation will be influenced by
both the functional and the lesion architecture. This is overwhelmingly
true of the lesions described in the current literature, a reflection of the
natural characteristics of the underlying pathology, especially the
commonest: vascular injury.

Let us consider carefully why the lesion architecture matters here. In
functional imaging, the physiological cause of the change in the BOLD
signal operates at sub-voxel granularity, for it is driven by the micro-
vasculature (Logothetis et al., 2001). Such anatomical structure as
emerges at the voxel level is then plausibly related to the underlying
neural anatomy, even if there may well be non-linearities in the relation
between BOLD and neural activity across the brain (Birn et al., 2001;
Heeger and Ress, 2002). If two voxels are co-activated it will not be
because an idiosyncrasy of the microvasculature makes it so, for the
vascular causal mechanisms do not operate at that anatomical scale.
Consider, by contrast, lesion-deficit mapping, where the effective
equivalent of BOLD activation is a lesion, almost invariably extending
across multiple voxels as an outcome not of the underlying functional
anatomy but of the causal pathological process. The anatomy of the
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