Author's Accepted Manuscript

Active inference and the anatomy of oculomotion

Thomas Parr, Karl J Friston

www.elsevier.com/locate/neuropsychologia

PII: S0028-3932(18)30047-2

DOI: https://doi.org/10.1016/j.neuropsychologia.2018.01.041

Reference: NSY6670

To appear in: Neuropsychologia

Received date: 24 October 2017 Revised date: 7 January 2018 Accepted date: 29 January 2018

Cite this article as: Thomas Parr and Karl J Friston, Active inference and the anatomy of oculomotion, *Neuropsychologia*, https://doi.org/10.1016/j.neuropsychologia.2018.01.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Active inference and the anatomy of oculomotion

Thomas Parr*, Karl J Friston

Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, WC1N 3BG, UK.

*Correspondence: 12 Queen Square, London.

thomas.parr.12@ucl.ac.uk

k.friston@ucl.ac.uk,

Abstract

Given that eye movement control can be framed as an inferential process, how are the requisite

forces generated to produce anticipated or desired fixation? Starting from a generative model based

on simple Newtonian equations of motion, we derive a variational solution to this problem and

illustrate the plausibility of its implementation in the oculomotor brainstem. We show, through

simulation, that the Bayesian filtering equations that implement 'planning as inference' can generate

both saccadic and smooth pursuit eye movements. Crucially, the associated message passing maps

well onto the known connectivity and neuroanatomy of the brainstem - and the changes in these

messages over time are strikingly similar to single unit recordings of neurons in the corresponding

nuclei. Furthermore, we show that simulated lesions to axonal pathways reproduce eye movement

patterns of neurological patients with damage to these tracts.

Keywords: Free energy; saccades; oculomotor; brainstem; predictive coding; active inference

1. Introduction

There are many neurological (Sereno and Holzman 1995, Büttner, Helmchen et al. 1999, Perry and

Zeki 2000, Anderson and MacAskill 2013) and psychiatric (Holzman and Levy 1977, Lipton, Levy et al.

1983, Sereno and Holzman 1995) conditions that cause impairments of eye movement control. As

such, assessment of oculomotion forms a crucial part of any neurological examination. We aim to

characterise the functional anatomy of eye movement control by appealing to active inference, a

principled approach to describing Bayes optimal behaviour (Friston, Daunizeau et al. 2009). Our

agenda here is to try and understand the oculomotor system in terms of its computational anatomy,

Download English Version:

https://daneshyari.com/en/article/7318082

Download Persian Version:

https://daneshyari.com/article/7318082

<u>Daneshyari.com</u>