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a b s t r a c t

This paper addresses the trajectory tracking problem of an autonomous tractor–trailer system by using a
fast distributed nonlinear model predictive control algorithm in combination with nonlinear moving
horizon estimation for the state and parameter estimation in which constraints on the inputs and the
states can be incorporated. The proposed control algorithm is capable of driving the tractor–trailer
system to any desired trajectory ensuring high control accuracy and robustness against environmental
disturbances.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The basic idea behind automating agricultural production
machines, e.g. an autonomous tractor–trailer system, is not only
the fact that energy and labor costs are increasing day by day
but also farmers need durable accurate and reliable production
machines. However, the steering accuracy of these machines
decreases when the operator gets tired or has to perform other
tasks apart from driving the tractor like operating mounted
trailers. In such cases, advanced control algorithms are more than
welcome. This has resulted in several automatic guidance systems,
of which some are already available on the market.

Today’s fast moving technology allows us the application of real
time kinematic (RTK)–global positioning systems (GPSs) which can
provide an accurate positioning accuracy of a few cm. Nonetheless
the performance of the currently available machine guidance
systems is rather limited due to the poor performance of the auto-
matic control systems used for this purpose. The main reasons for
this poor performance are the complex vehicle dynamics and the
large variation in soil conditions which make that the conventional
(e.g. PID) controllers for machine guidance have to be tuned very
conservatively. By conservative tuning, robustness of the controller
is obtained at the price of performance. Moreover, the constraints

of the mechanical system cannot be taken into account directly in
these controllers, such that the ad hoc implementation of these
constraints can lead to suboptimal behavior of the system. In such
cases, advanced control algorithms which can deal with con-
straints on the states and the inputs are coherent preferences for
the control of complex outdoor vehicles.

Applied to agricultural machinery, model predictive control
(MPC) has several advantages over conventional controllers, e.g.
they can deal with the constraints on the system and actuator
saturation. The main goal of MPC is to minimize a performance
criterion with respect to constraints of a system’s inputs and out-
puts. The MPC caught the attention of researchers in the 1980s,
and the first MPC controllers were implemented in the process
industry which has less stringent real-time requirements due to
large sampling periods in the order of seconds or minutes [1].
The reason for a such a preference is that MPC depends upon repet-
itive online solution of an optimal control problem.

Large scale complex systems can be divided into a finite number
of subsystems. Real-life applications may be continuous (power
networks, sewer networks, water networks, canal and river
networks for agriculture, etc.) or discrete (traffic control, railway
control, etc.) [2]. The common approach to control these systems
is the use of a decentralized control approach, e.g. decentralized
MPC in which the interactions between the subsystems are consid-
ered as disturbances to each subsystem. As these controllers are
not aware of the interactions with other subsystems, they will
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exhibit selfish behavior leading to suboptimal performance of the
global system. An alternative solution is the use of a centralized
control approach, e.g. centralized MPC. However, centralized MPC
design for such a complex large scale system may not be practical
due to the computational requirements or to the impossibility of
obtaining a centralized model of the whole system including all
the subsystem interactions. Besides, the computational complex-
ity, another disadvantage of the centralized control approach is
that all subsystems have to trust one central controller which is
difficult to coordinate and maintain [3]. One way of addressing
such problems is to use of distributed MPC in which the overall
system is controlled by local MPCs based on a limited information
about the system to be controlled or a partial state information [4].
Roughly speaking, whereas this type of control approach consisting
of several local agents requires less computational power when
compared to its centralized counterpart, the overall control accu-
racy of the system highly depends on the cooperation and commu-
nication between the local agents.

As an agricultural production machine, a tractor–trailer is a
complex mechatronic system which consists of several subsystems
that interact with each other as a result of energy flows. For
instance, the diesel engine, the steering system of the tractor and
the steering system of the trailer share the same hydraulic oil. As
a result, once an input is applied to one of the subsystems, it
always affects the others. Considering the disadvantages of
decentralized and centralized control approaches mentioned
above, complex mechatronic systems, such as a tractor–trailer,
are the worthwhile considering distributed control approach since
the design of robust and accurate controllers for such systems is
not a straightforward task due to their highly nonlinear dynamics
[5].

Researchers have recently been focussing on distributed control
in which some limited information is transmitted among local
agents. In distributed MPC, the optimization problem is broken
into smaller pieces under the assumption of solving many small
problems is faster and more scalable than solving one large prob-
lem [6]. A detailed survey about the architectures for distributed
and hierarchical MPC can be found in [7]. There are two main
approaches to distributed control: Independent distributed control
[8,9] and cooperative distributed control [10,11]. While in the for-
mer, each subsystem agent considers network interactions only
locally resulting into a Nash equilibrium for the performance of
the system, in the latter, all local control actions actions are consid-
ered on all subsystems resulting into a Pareto optimum [12]. So, in
independent distributed NMPC (iDiNMPC), the cost function of
each subsystem consists of only the states of the local subsystem.
On the other hand, in cooperative distributed NMPC (cDiNMPC),
the cost function of each subsystem consist of the states of the
overall system dynamics. An iterative cooperative distributed case
was proposed in [3]. It has been shown in [3] that the communica-
tion between subsystems and using the global cost function result
converging to the one of the corresponding centralized control case
as the iterations number increases. Since the trajectory following
accuracies of both the tractor and the trailer are essential in an
agricultural operation, the latter approach is followed in this paper.

In this paper, a DiNMPC with the ACADO code generation tool
[13,14] for the trajectory tracking problem of an autonomous trac-
tor–trailer system has been developed and tested in real-time in
the presence of several uncertainties, nonlinearities and biological
variabilities. Although a tractor–trailer system is relatively less
complex when compared to other large-scale systems (power net-
works, etc.), short times for optimization are crucial for such a
mechatronic system. Since the optimization problem of NMPC is
a complex problem and it is time-consuming, the main goal of this
study is to design a fast NMPC for the tractor–trailer system. To
succeed, the following selections have been made:

1. The use of a kinematic model instead of a dynamic model.
2. The use of C++ source files to realize the control algorithm in

real-time.
3. The use of the distributed control algorithm instead of a central-

ized one.

Thanks to the selection above, the feedback times of the
cDiNMPC and iDiNMPC are around 7 ms and 3 ms, respectively.

This paper has been organized as follows: The kinematic model
of the system is presented in Section 2. The basics of the imple-
mented DiNMPC and the learning process by using a nonlinear
moving horizon estimation (NMHE) method have been explained
in Section 3. The experimental set-up and the experimental results
are described in Section 4. Finally, some conclusions have been
drawn from this study in Section 5.

2. Kinematic tricycle model of a tractor–trailer system

The schematic diagram of an autonomous tractor–trailer sys-
tem is presented in Fig. 1.

The model for the autonomous tractor–trailer system is a
kinematic model neglecting the dynamic force balances in the
equations of motion. A dynamic model would, of course, represent
the system behavior with a better accuracy, but then a system
identification and multibody modeling techniques would be
needed for obtaining an accurate dynamic model of the system.
Moreover, a dynamic model would increase the computational
burden in the optimization process in DiNMPC. Thus, an extension
of a simpler well-known tricycle kinematic model in [15,16] has
been used for the DiNMPC design in this paper. The extensions
are the additional three slip parameters (l; j and g) and the def-
inition of the yaw angle difference between the tractor and the
trailer by using two angle measurements (di and b) instead of
one angle measurement.

The equations of motion of the system to be controlled are as
follows:

Fig. 1. Schematic illustration of tricycle model for an autonomous tractor–trailer
system.
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