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a b s t r a c t

Quadrocopters offer an attractive platform for aerial robotic applications due to, amongst others, their
hovering capability and large dynamic potential. Their high-speed flight dynamics are complex, however,
and the modeling thereof has proven difficult. Control algorithms typically rely on simplified models,
with feedback corrections compensating for unmodeled effects. This can lead to significant tracking
errors during high-performance flight, and repeated execution typically leads to a large part of the track-
ing errors being repeated. This paper introduces an iterative learning scheme that non-causally compen-
sates repeatable trajectory tracking errors during the repeated execution of periodic flight maneuvers. An
underlying feedback control loop is leveraged by using its set point as a learning input, increasing repeat-
ability and simplifying the dynamics considered in the learning algorithm. The learning is carried out in
the frequency domain, and is based on a Fourier series decomposition of the input and output signals. The
resulting algorithm requires little computational power and memory, and its convergence properties
under process and measurement noise are shown. Furthermore, a time scaling method allows the trans-
fer of learnt maneuvers to different execution speeds through a prediction of the disturbance change. This
allows the initial learning to occur at reduced speeds, and thereby extends the applicability of the
algorithm for high-performance maneuvers. The presented methods are validated in experiments, with
a quadrocopter flying a figure-eight maneuver at high speed. The experimental results highlight the
effectiveness of the approach, with the tracking errors after learning being similar in magnitude to the
repeatability of the system.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Aerial robots serve as platforms for robotic applications that
provide numerous benefits, including the ability to move freely
in three-dimensional space, and the significantly increased ability
to overcome obstacles due to not being limited to motion on the
ground. For relatively small platforms that require hovering capa-
bilities, multi-rotor vehicles such as quadrocopters are often the
vehicle of choice [1]. Compared to other such platforms, quadro-
copters profit from high mechanical robustness due to a minimal
number of moving parts [2], safety due to comparatively small
rotor size, and high thrust-to-weight ratios allowing high-perfor-
mance maneuvers as well as the transport of large payloads.

While the use of quadrocopters as robotic platforms was lar-
gely confined to research institutions in the past, a growing num-
ber of industrial applications are now in the process of being
developed and deployed. Examples include aerial imaging for

photogrammetry, motion picture production, and journalism [3],
environmental monitoring and inspection tasks of hard-to-reach
objects such as pipelines, dams, and power lines [4], the creation
of ad hoc antenna networks or arrays [5], as well as disaster coor-
dination [6].

The capability of quadrocopters to perform highly dynamic,
complex, and precise motions has been demonstrated repeatedly
in recent years (see, for example, Mellinger et al. [7], Michael
et al. [8], Muller et al. [9], Ritz et al. [10]). In order to execute such
high-performance motions, the commonly used approach consists
of using a first-principles model of the quadrotor dynamics to
design the nominal maneuver, and a model-based feedback control
law to ensure tracking of the nominal trajectory.

Such traditional feedback controllers however have important
limitations in high-performance quadrotor applications. While
the first-principles models used to design the controllers capture
the near-hover behavior of quadrocopters well, secondary effects
become increasingly important when maneuvering speed
increases. Examples of such effects are the complex drag and lift
behavior of rotary wings under unsteady inflow conditions [11],
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the aerodynamic effects of a vehicle moving through the turbulent
wake of its propellers [12], and external influences such as wind or
ground and wall effects when operating in proximity to the envi-
ronment [13]. Such effects are not typically accounted for in the
maneuver and controller synthesis stage in order to make the
design process tractable. The execution then heavily relies on the
feedback controller to compensate for potentially significant
effects not captured by the nominal dynamics.

In order to improve the tracking performance of quadrocopters
under feedback control, a number of researchers have proposed
learning schemes. Examples of such schemes include those based
on reinforcement learning techniques [14,15] and neural networks
[16,17], which are designed to automatically find well-performing
control policies, and adaptive control methods [18–20] that adapt
parameters that are based on modeled disturbances such as pay-
loads, center of mass shifts and external disturbances.

When a motion is to be executed repeatedly, a further opportu-
nity to improve tracking performance may arise: Many of the dis-
turbances that degrade tracking performance will be similar each
time the vehicle performs the motion. These disturbances can then
be compensated for non-causally using data from past executions.
Control strategies that exploit available data from past executions
in order to improve tracking performance were first proposed in
the late 1970s and early 1980s [21,22] for applications in motion
control and power supply control. Since then, active research in
this field, covering numerous applications and problem formula-
tions (see e.g. Wang et al. [23], Bristow et al. [24], Cuiyan et al.
[25], and references therein), has shown it to be a powerful
approach for high-performance reference tracking. In extensions
to these learning methods, several authors have shown the appli-
cation of learning control methods to systems with underlying
feedback control loops (e.g. [26,27]). In such scenarios, the power-
ful capability of learning control to non-causally compensate
repeatable disturbances is combined with real-time feedback con-
trol to correct for non-repetitive noise.

While the application of learning algorithms, and specifically
non-causal strategies, to stationary systems (such as rotating
machinery and robotic arms [23]) is well-established, its use for
the compensation of complex aerodynamic effects in flying vehi-
cles is less mature and has been actively researched during recent
years. Several high-performance maneuvers for multi-rotor vehi-
cles have been demonstrated with the use of learning algorithms.
Broadly speaking, the learning approaches used can be categorized
in two groups:

The first group is characterized by its ability to learn motions
that are parameterized. The motion is thus described by a (finite)
set of design parameters, chosen by the user. After the execution
of the motion, these parameters are adapted to compensate for dis-
turbances. The direction and magnitude of the correction may be
model-based, or based on the user’s intuition. A discussion on
the importance of choosing ‘good’ design parameters may be found
in Lupashin and D’Andrea [28], where a learning algorithm for this
kind of parameterized motions is demonstrated for multiple flips
and fast translations with quadrocopters. A further demonstration
of this class of learning algorithms is provided in Mellinger et al.
[29]. The ability to shape the tracking performance strongly
depends on the number of parameters that are optimized; in the
above examples, the objective is to minimize the error at specific
time instants (‘key frames’), and a relatively small number of
parameters is sufficient to do so. This makes the methods compu-
tationally lightweight.

The second group of learning approaches considers more gen-
eric motions that need not be specified by parameters. The system
dynamics are considered in discrete time, and the correction con-
sists of correction values (typically control inputs or set points)
for each discrete time step. After execution of the motion, a

numerical optimization over the correction values is performed
in order to minimize a metric related to the tracking error. In this
optimization, a model of the system dynamics provides the
mapping from corrections to the tracking error. This approach is
commonly known as a form of iterative learning control [24],
and its application to high-performance quadrocopter flight has
been demonstrated [30–33].

The delimitation between the two groups is not strict. Indeed,
the second group of learning approaches could be seen as using a
very large number of values to parameterize the correction.

The algorithm presented in this paper can be characterized to
be a form of repetitive control [23] in that it is a technique for
non-causally compensating repeated tracking errors in the execu-
tion of periodic motions. Algorithms of this form have previously
shown good performance when applied to related problems where
aerodynamic disturbances are considered, in particular the rejec-
tion of periodic wind disturbances on wind turbines [34,35].

Similar methods can also be found in the field of time waveform
replication, as commonly applied to vibration testing systems (e.g.,
[36] and references therein). In such applications, the first-princi-
ples models guiding the iterative learning process are often
replaced by experimentally identified frequency response
functions.

Similar to the second group of learning algorithms, we do not
assume a parameterized motion. However, we reduce the dimen-
sionality of the corrections that we intend to learn by assuming
that they are periodic. This allows us to parameterize the correc-
tions as the coefficients of truncated Fourier series. The order of
the Fourier series provides a means to trade off computational
complexity and the ability to compensate for temporally local or
high-frequency disturbances. Furthermore, the approach can be
considered to be conceptually similar to the one presented by
Lupashin and D’Andrea [28], which presents an adaptation strategy
to correct for state errors at discrete points in time of parameter-
ized motion primitives. However, we consider periodic errors
(instead of errors at specific points in time), and do not require
parameterization of the maneuver.

The contribution of this paper to the field of quadrocopter con-
trol lies in the application of methods from the fields of repetitive
control and iterative learning control to quadrocopters. A general
framework for arbitrary periodic motions is presented. We demon-
strate how a feedback controller can be leveraged to shape the
closed-loop dynamics of the quadrotor system, and show that a
linear time-invariant approximation of the closed-loop dynamics
suffices to guide the learning process. Using statistical properties
of the disturbance, measurement noise, and the influence of non-
linearities, we derive the optimal inter-execution learning update
step size. The validity of the approach and its performance is inves-
tigated through experiments in the ETH Flying Machine Arena with
a quadrocopter under position control.

Furthermore, this paper introduces a novel method that extends
the applicability of the repetitive control approach when the refer-
ence trajectory is too fast to be learnt directly, for example because
the initial execution fails entirely. The core idea here lies in provid-
ing an improved initial guess of the disturbances degrading track-
ing performance. This typically enables learning of the trajectory
because the errors are sufficiently small for the first-principles
model to provide reliable information on how to compensate. To
find the improved initial guess, we introduce a time scaling
method that allows initial learning to occur at reduced maneuver-
ing speeds and the transfer of learnt corrections from the reduced-
speed execution to full speed. This method may also be applied to
other complex dynamic systems where it is necessary to limit ini-
tial tracking errors in order to avoid the system failing. The time-
scaling method provides an interesting alternative to methods that
rely on aborting trials when the errors grow too large [31] in that
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