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a b s t r a c t

In this research, time optimal control is considered for the hit motion of a badminton robot during a serve
operation. Even though the robot always starts at rest in a given position, it has to move to a target posi-
tion where the target velocity is not zero, as the robot has to hit the shuttle at that point. The goal is to
reach this target state as quickly as possible, yet without violating the limitations of the actuator. To find
controllers satisfying these requirements, both model-based and model-free controllers have been devel-
oped, with the model-free controllers employing a Natural Actor-Critic (NAC) reinforcement learning
algorithm. The model-based controllers can immediately achieve the desired motions relying on prior
model information, while the model-free methods are shown to yield the desired robot motions after
about 200 trials. However, in order to achieve this result, a good choice of the reward function is essential.
To illustrate this choice and validate the resulting controller, a simulation study is presented in which the
model-based results are compared to those obtained with two different reward functions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper considers time optimal motion to a non-equilibrium
target state, with the goal of using this to perform serve motions of
a badminton robot. For such a serve, the robot always starts from an
initial position, after which it has to accelerate the racket to inter-
cept a shuttle, which means it has to arrive at a prescribed hit time
and point with a prescribed, non-zero hit velocity. Note that
because of this non-zero hit velocity the target is a not an equilib-
rium state, as the robot cannot remain in the desired position with
the desired non-zero velocity. While performing In this case, to
allow the opponent less time to prepare, we want to perform this
motion in a time optimal manner, so that the robot starts moving
as late as possible taking into account the actuator limitations. In
general, similar time optimal motion control problems are relevant
for a wide variety of mechatronic applications, where being able to
generate faster motions typically means more units can be pro-
duced or more output can be generated within a given time span.
Research into time optimal motion has therefore already received
considerable attention [2,5,8,10,17,21,22,24,25], but this has
mostly been from the field of model-based motion control, while
model-free methods are rarely considered. For model-based meth-

ods, an optimal control problem is directly formulated and solved
numerically, explicitly minimizing the motion time or using
approximate costs yielding simpler optimization problems
[21,24]. While these model-based approaches yield good results,
they do have some associated drawbacks. A first drawback is that
model-based methods rely on an accurate model of the system to
be controlled, while in many cases such models are not available
or are difficult and time-consuming to obtain. Another drawback
is that these methods require the solution of a numerical optimiza-
tion problem, which can be a daunting task, especially when non-
linear models are needed that lead to non-convex problems,
although this problem is less significant if the calculations can be
performed offline. A final drawback of model-based methods is that
in general they do not adapt or learn from past experience. As a
result, if the model used for the optimization is not perfect, the
motions obtained will not be time optimal and will remain as such,
unless learning laws are added as for example in [8].

Model-free methods can address most of these drawbacks,
since they operate by interacting with the environment and by
learning from these interactions. As a result, they can be employed
with very little prior information, and adapt automatically if the
circumstances are altered. To investigate whether such methods
can directly be applied to a real mechatronic system and how well
they perform, a model-free approach is implemented in this paper,
as well as a classical model-based one, and their performance is
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compared for the specific task of the badminton robot’s serve
operation.

As stated, learning approaches have already been developed for
time optimal motion [8,17], but these rely on explicit models of the
controlled system or assume linear dynamics and perform an
implicit identification. In contrast, a model-free reinforcement
learning (RL) algorithm is employed in this paper, which directly
learns a control policy for the considered task, without the knowl-
edge of a model of the system. Among the model-free methods, RL
is a framework in which an agent learns an optimal policy (control
law) to control its environment (the system considered) by using
experience obtained from interacting with it. This interaction is
characterized by two relevant aspects, performing actions and
observing the resulting system behaviour [9]. Each time an action
is taken (driving the actuators), a state transition can occur and a
scalar reward is calculated using the observed results (evaluation
of the quality of the action). The agent then adapts the mechanism
it uses to select its actions, aiming to maximize the reward
received in the future. Since the goal is to maximize these rewards,
it is essential to select a reward function corresponding to the
specifications, which in this case means a time optimal motion.

A popular class of RL algorithms are the actor-critic methods
[12], where the actor is equivalent to the control policy and the
critic is a value function used to evaluate the policy’s quality.
Actor-critic methods can deal with continuous state and action
spaces and, in general, have good convergence properties and per-
formance if a gradient-based policy improvement is used [12]. The
critic provides a low-variance value function estimate based on
which the gradient with respect to the policy can be computed,
so the actor can be updated in the direction of performance
improvement indicated by the gradient. It has also been suggested
to improve the learning performance by using the natural policy
gradient, which gives the steepest ascent direction with respect
to the Fisher information matrix, instead of the standard gradient
[1]. We therefore use the Natural Actor-Critic (NAC) algorithm as
described in [14], which is widely used in robotics and often yields
a good learning performance [4,11,15]. Some modifications are
proposed here though to make it work in an episodic instead of
continuous framework, since this is more natural for the robot’s
serve motion.

The remainder of the paper is organized as follows. First, the
badminton robot is introduced in Section 2, and the task to be
performed is defined. Next, the model-based and model-free
approaches are developed, in Sections 3 and 4 respectively. Simula-
tion results for both controllers are then presented in Section 5,
including a detailed comparison and discussion, before conclusions
and topics for future work are suggested in Section 6.

2. Badminton robot

2.1. Overview of badminton robot

The application considered in this work is the badminton robot
developed by FMTC. A schematic overview of the robot and its
mode of operation are given in Fig. 1. Besides the mobile robot
platform on which the racket is mounted, there is also a 3-dimen-
sional camera system that detects shuttles flying to and from the
robot and estimates their expected further trajectories. The possi-
ble interception points at which the robot can hit the shuttles are
then calculated and the robot is actuated towards these points to
perform the hit motion. A more detailed description of the badmin-
ton robot can be found in [18], and a movie of the robot is available
at http://www.fmtc.be.

A closer look at the mobile platform is shown in Fig. 2. It is
essentially a serial robot with 3 degrees of freedom. The first two

are driven by the linear and rotational motor (Rot. motor in the
figure), and they respectively allow the robot to move along the
linear guide and to rotate in a plane perpendicular to a typical
shuttle trajectory. To perform the effective hit, the important
degree of freedom is the one that allows the racket to rotate
backward and forward about the joint near its handle, which is
driven by the hit motor. The construction is such that at the time
contact is made with the shuttle only the hit motor should have
a non-zero velocity, while the linear and rotational motor can both
be at standstill. As a result, the linear and rotational motor are
easier to control, and in the remainder of the paper we only
focus on controlling the hit motor towards the non-zero target
velocity.

2.2. Serve operation of badminton robot

In this paper only the serve motion of the robot is considered,
since this motion is always performed in a similar manner. As a
result, learning becomes possible, and it is straightforward to com-
pare the results obtained during different hits and using different
strategies. In order to perform a serve, a shuttle is dropped from
a mechanism placed at a fixed point above the robot, and the
instant t ¼ tr it starts to fall is detected using an optical sensor,
as shown in Fig. 3. Since the drop mechanism always releases
the shuttles in the same manner, the point where the robot has
to hit the shuttle is always approximately the same, as is the period
of time Tdrop between the shuttle’s release tr and the hit
th ¼ tr þ Tdrop. To obtain a time optimal motion, the goal is then
to start moving as late as possible, at t ¼ th � T , minimizing the
motion’s duration T. For the ease of notation, however, it is
assumed in the remainder of the paper that the hit motion starts
at t ¼ 0 and is completed at t ¼ T.

Summarizing the specifications for the serve motion, the hit
motor has to start at an angle q and angular velocity _q

qð0Þ; _qð0Þð Þ ¼ �p=4;0ð Þ rad; ð1Þ

and has to move to the desired hit point with

qðTÞ; _qðTÞð Þ ¼ 0;3ð Þ rad=s; ð2Þ

while minimizing T so that the motor reacts as late as possible, and
without violating bounds on the motor. In this case, the controller
sends a voltage signal u proportional to the current applied to the
motor. The allowable range for these controller voltages u and
hence also the controller outputs is

�0:2 6 u 6 0:2 V: ð3Þ

3. Model-based control

For the model-based approach, a parametric model is needed to
predict the behaviour of the racket. For this, a frequency response
function (FRF) expressing the dynamic relation between the con-
troller output u and the racket’s angle q is first estimated, as shown
in Fig. 4. The racket generally behaves like a double integrator, as
would be expected for an inertia driven by a motor. Other dynam-
ics are observable as well however, at low frequencies due to fric-
tion in the bearing, and around 10 Hz, where the resonance
frequency of the racket is found. In a next step, a parametric model
is fitted to this FRF, using a least-squares model-fitting procedure
[16]. In this case, a linear state space model is found, with matrices
A; B; C and D.

Using the estimated prediction model and the specifications, an
optimal control problem can be formulated, searching for the opti-
mal motion profiles and the corresponding control signals. The fol-
lowing problem is then obtained:
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