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a b s t r a c t

In this paper, a robust data-driven fault detection approach is proposed with application to a wind
turbine benchmark. The main challenges of the wind turbine fault detection lie in its nonlinearity,
unknown disturbances as well as significant measurement noise. To overcome these difficulties, a
data-driven fault detection scheme is proposed with robust residual generators directly constructed from
available process data. A performance index and an optimization criterion are proposed to achieve the
robustness of the residual signals related to the disturbances. For the residual evaluation, a proper eval-
uation approach as well as a suitable decision logic is given to make a correct final decision. The effective-
ness of the proposed approach is finally illustrated by simulations on the wind turbine benchmark model.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

During the past decade, the use of wind energy as a clean and
renewable resource has attracted global interest. A wind turbine
is an aeroelastic mechanical system which converts kinetic wind
energy to electrical power. On the other hand, wind turbines still
suffer from potential problems, such as vibration, corrosion and
temperature changes, e.g. in the motors, sensors, blades and gear-
box, which could affect the production capability and may cause
remarkable downtime of the entire system. The maintenance of
faulty wind turbines is costly and even dangerous since many wind
turbines are installed offshore. In order to detect abnormalities in
the systems as early as possible to avoid potential irreversible
damage, automatic detection of the faults is highly desirable from
the application point of view, which motivates us to design a fault
detection system for wind turbines.

In recent years, several fault detection systems have been
successfully developed for wind turbines. Most of the proposed ap-
proaches rely on the physical model of wind turbines [1–4,6,5,7,8]
and based on which, the well established model-based fault diag-
nosis techniques [9–15] can be directly applied. However, model-
ing of a wind turbine is a difficult task in practice [16,17], which
still limits the application of model-based approaches. Parallel to
the research of model-based fault detection techniques, the data-
driven methods are currently receiving considerable attention.
Different from model-based approaches which require the mathe-

matical model of system known as a priori, data-driven methods
only depend on the measured process data. Several basic data-dri-
ven methods, such as principle component analysis (PCA), dynamic
principle component analysis (DPCA), independent component
analysis (ICA), partial least squares (PLS) and subspace aided ap-
proach (SAP), have been well developed [22,23]. SAP is mainly
based on identifying the primary form of residual generators di-
rectly from the measured data. Residual generator is an important
concept in the model-based fault detection framework. The basic
idea of a residual generator is to generate a residual between the
actual output and the estimated output. If noise is not considered,
the generated residual should be zero when there is no fault and
nonzero when a fault appears. However, in real applications, the
generated residual should be further evaluated, including thresh-
old computation and decision making, to make a correct final deci-
sion. Two popular subspace-based fault detection approaches can
be found in [24,25].

In order to promote the fault detection and other related tech-
nologies for wind turbines, Odgaard et al. developed a wind turbine
simulator in [18] as a research competition for all the participants.
In this framework, many effective designs have been proposed
based on the benchmark physical model [19–21]. Recently, to im-
prove the level of the wind turbine benchmark close to the actual
statue, Odgaard et al. renewed the benchmark by added new chal-
lenges. Compared to the previous one, the latest benchmark is
modified in many different ways. First of all, the wind turbine
model is more sophisticated and realistic, which may help to
achieve better simulation abilities and make the problem more
realistic. Another difference is that various wind inputs are intro-
duced into this model. An IEC [37] von Karman turbulence model
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is used to generate three types of wind input files, of which the
mean wind speeds at the 90-m hub height are 11 m/s, 14 m/s,
and 17 m/s [26]. These turbulent wind input files can be directly
applied in the latest benchmark. Moreover, extra relevant details
are implanted into the fault scenarios. As a result, more sophisti-
cated advanced fault detection techniques are required from both
academic and practical aspects.

Since it is quite difficult to obtain a precise mathematical model
of the wind turbine, the data-driven approaches seem more conve-
nient for the application point of view. On the other hand, seen
from a control theory perspective, a major problem in the wind
turbine control system is that the wind turbine is driven by a dis-
turbance, the wind. The wind speed is, however, measured with a
large measurement noise added, as well as a large risk of an offset
[26]. As the wind speed can be treated as a disturbance input, ro-
bust residual generators should be constructed directly from the
available process measurements and most importantly, these
residual generators shall be sensitive to output faults and insensi-
tive to input disturbance.

For this purpose, a robust data-driven fault detection scheme
is proposed for wind turbines. The schematic of the fault detec-
tion scheme is shown in Fig. 1, which contains two steps, i.e. (a)
residual generation, and (b) residual evaluation including
threshold computation and decision making. In the first step,
a robust residual vector instead of a single residual signal is
generated under a given performance index and an optimization
criterion. In the second step, a proper evaluation approach as
well as a suitable decision logic is given to make a correct final
decision.

The rest of the paper is organized as follows. Section 2 intro-
duces the new wind turbine benchmark and the fault scenarios.
Section 3 develops a robust fault detection scheme based on con-
structing robust residual generators directly from available process
data. The proposed robust fault detection scheme is applied to the
benchmark in Section 4. Finally, the paper ends with conclusion in
Section 5.

2. Benchmark system and faults description

2.1. Benchmark model

The wind turbine benchmark proposed by Odgaard and Johnson
in [26] is described at the system level. It mainly consists of five
subsystems: blade and pitch system, drive train system, generator
and converter system, controller system and sensors. The bench-
mark simulates a three-bladed horizontal axis, and variable speed
wind turbine containing a pitch, torque controller and a yaw con-
troller. It is disturbed by unknown wind disturbances and con-
trolled in closed-loop with PI controllers. Combined with an IEC
von Karman turbulence wind model and deliberately designed
faults, the benchmark is complex and realistic. It is suitable for test-
ing different detection and isolation schemes on the wind turbine.

Most components of the benchmark are implemented within
the Simulink environment, in which fifteen sensors are available
for measuring the input and output variables. All of these sensors
are modeled by adding a band-limited white noise. The detailed
descriptions of sensors and noise power are summarized in
Table 1.

2.2. Fault scenarios

In the benchmark model, ten sensor and actuator faults are con-
sidered along the time span of 630 s. Faults 1–6 are sensor faults,
including measurements that are stuck, scaled or offset from the
true values. Faults 7–10 are actuator faults, including Faults 7
and 8 in pitch actuators, Fault 9 in generator torque and Fault 10
in yaw actuator. Faults 7 and 8 are modeled by changing the
parameters in the relevant pitch actuator model. Fault 9 is modeled
by adding an offset on the generated generator torque and Fault 10
is modeled by setting the yaw angular velocity to 0 rad/s. Detailed
descriptions of these faults and their durations are summarized in
Table 2.

3. Robust data-driven fault detection design

The robust fault detection scheme will be presented in this sec-
tion. Based on the method proposed by Ding et al. [24], we first
identify the parity space directly from the measured data. Then,
we select the optimal parity vectors under a given performance in-
dex as well as an optimization criterion. It follows the construction
of robust residual generators using the observer-based residual
generation technique. At last, the robust fault detection scheme
is summarized into an algorithm.

3.1. Identify parity space directly from measured data

A Linear Time-Invariant (LTI) system is usually modeled in the
following discrete-time state-space form.

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þwðkÞ ð1Þ
yðkÞ ¼ CxðkÞ þ DuðkÞ þ vðkÞ ð2Þ

where xðkÞ 2 Rn is the vector of the state variables, uðkÞ 2 Rl are the
input signals and yðkÞ 2 Rm are the measured output signals.
wðkÞ 2 Rn and vðkÞ 2 Rm are process noise and measurement noise,
respectively. As standard assumptions, wðkÞ and vðkÞ are zero-mean
and normal distributed white noise, and they are independent of
the input vector uðkÞ and the initial state vector xð0Þ. We define
the following block Hankel matrices for outputs:

Yp ¼

yðk� sÞ yðk� sþ 1Þ . . . yðk� sþ N � 1Þ
yðk� sþ 1Þ yðk� sþ 2Þ . . . yðk� sþ NÞ

..

. ..
. ..

. ..
.

yðkÞ yðkþ 1Þ . . . yðkþ N � 1Þ

2
66664

3
77775

Yf ¼

yðkþ 1Þ yðkþ 2Þ . . . yðkþ NÞ
yðkþ 2Þ yðkþ 3Þ . . . yðkþ N þ 1Þ

..

. ..
. ..

. ..
.

yðkþ sþ 1Þ yðkþ sþ 2Þ . . . yðkþ sþ NÞ

2
66664

3
77775

Fig. 1. Block diagram of standard residual generation and decision logic structure.

Table 1
Available sensors and the added noise power [26].

Sensor type Symbol Unit Noise power

Wind speed at hub height vh;m m/s 0.0071
Rotor speed wr;m rad/s 10�4

Generator speed wg;m rad/s 2 � 10�4

Generator torque sg;m Nm 0.9
Generated electrical power pg;m W 10
Pith angle of ith Blade bi;m deg 1.5 � 10�4

Azimuth angle low speed side /m rad 10�4

Blade root moment of ith blade Mi;m Nm 103

Tower top acceleration in x direction €xm m/s2 5 � 10�4

Tower top acceleration in y direction €ym m/s2 5 � 10�4

Yaw error Nm deg 5 � 10�2
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