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a b s t r a c t

In high-performance motion systems, e.g. wafer-stages and pick-and-place machines, there is an increas-
ing demand for higher throughput and accuracy. The rigid-body design paradigm aims at very stiff
designs, which lead in an evolutionary way to increasingly heavier systems. Such systems require more
and more power, such that this paradigm rapidly approaches the boundary of its scalability. An alterna-
tive paradigm is to design a lightweight machine with over-actuation and over-sensing, to deal with the
resulting flexibilities. This paper presents a spatial feedforward method for over-actuated flexible
motions systems, which aims at reducing the vibrations over the complete flexible structure during
motion. The proposed method is experimentally validated on an industrial prototype and compared to
mass feedforward and the standard input shaping technique.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the semiconductor industry higher throughput and higher
accuracy are desired to keep up with Moore’s law [1] and stay
ahead of competition. More aggressive motion profiles (i.e. higher
accelerations) and a design with higher stiffness (i.e. higher mass)
are required to obtain the desired higher throughput, while main-
taining desired accuracy. This will require larger forces, which put
stricter demands on actuators, amplifiers and cooling, which is ex-
pected to become infeasible in the near future. For a general over-
view of the control of high-performance motion systems see [2,3].

The next generation of advanced motion systems is expected to
be lightweight, which results in significant internal flexibilities. An
example of the mode shapes of such systems is shown in Fig. 1.
This has several consequences for control design:

1. resonances in the region of interest, i.e. close to or even
below the objective bandwidth, and

2. transfer between sensor output y and performance location z
becomes dynamical due to the limited stiffness, i.e. there is
no geometrical transformation possible anymore to ana-
lyze/control the performance.

Common feedforward methods, which do not take the
flexible dynamics into account, will not lead to satisfactory
results for lightweight systems. Lightweight systems are typically

over-actuated [4–6], i.e. the system contains more actuators than
rigid-body degrees of freedom. The additional actuators provide
extra design freedom, which is not exploited by the current
feedforward design methods. Therefore, the goal is to exploit this
design freedom to obtain a higher performance than traditionally
designed systems with rigid-body feedforward.

Snap-feedforward [7,8] is a common method to compensate for
the compliance of the low frequent contribution of flexible modes
in feedforward, i.e. the deformation due to compliance during
motion. However, this method only guarantees local performance,
i.e. at the sensor location only.

Data-based tuning of the feedforward parameters [9] can
improve performance, but still suffers from the same drawbacks
as snap-feedforward. Also similar work with a more generic struc-
ture, such as [10,11], only guarantees performance at the sensor
location.

For the class of lightweight systems, local performance at the
sensor y is generally not sufficient, since this does not provide
any guarantees at the performance location z, i.e. the location
where the tool operates [12,13].

A common method to reduce vibrations in motion systems is
input shaping, where the objective is to remove the eigenfrequen-
cies of the flexible structure from the input signal. This is typically
done by convolving the input signal with an input shaper [14–20].
Such methods aim to increase the performance after setup-time,
i.e. the residual vibrations after the point-to-point motion are
attenuated. However, these methods obtain global performance,
i.e. at any point of the structure.

If positive shapers are considered [21], the shaped input signal
satisfies the same bounds as the original input signal at the cost of
extra delay, which may be undesired in the intended application.
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Negative shapers can reduce this delay [16,22], however there are
no guarantees provided on the bound of the shaped input signal.
For MIMO systems this delay can be reduced [21], if the input sig-
nal is known in advance. However, in this paper the setpoint trajec-
tory is assumed not to be known a priori. Also, application of input
shaping changes the setpoint trajectory which is typically not de-
sired in many high-performance motion applications.

Learning based approaches [23–25], such as Iterative Learning
Control (ILC), require a measurement of the performance variable
during the learning process, which is not available in the consid-
ered class of motion systems. Furthermore, ILC requires a new
learning sequence for every new setpoint trajectory. In [26,27]
ILC compensation for residual vibration prevents excitation of
modes by using an actuation and observation window. In this
method only local performance is guaranteed.

The proposed method in this paper can be considered as a spe-
cial case of static input–output decoupling [28,29]. Typically, static
decoupling aims at diagonalization of the plant, by pre- and post-
multiplying the plant with a static matrix, to allow for decentral-
ized control. However, the proposed method aims at independent
control of the rigid-body modes and preventing the excitation of
flexible modes. This is achieved by pre-multiplying the plant with
a static matrix in the feedforward path. Therefore, there is less
freedom compared to standard decoupling techniques, since only
an input transformation is applied. Hence, the standard decoupling
techniques cannot be applied for the problem considered in this
paper.

The proposed method, called spatial feedforward, exploits the
freedom of over-actuation explicitly. This design freedom is used
to prevent excitation of the performance-relevant flexible modes.
Compared to existing methods, the proposed method does not
introduce extra delay in the input signal.

The techniques in this paper aim at obtaining global perfor-
mance, i.e. at any point of the flexible structure, in contrast to
earlier work [30,31] where local (inferential) performance is
obtained.

Compared to earlier work on spatial feedforward [32], this pa-
per provides the extension to multiple modes, including conditions
for the existence of the solution. The contributions of this paper are
to provide a feedforward method which has the following
properties:

1. explicit use over-actuation, and
2. no additional delays introduced, and
3. prevent the excitation of multiple flexible modes, and
4. performance guarantee over the whole structure, i.e. global

performance, and
5. independent of the setpoint trajectory.

The outline of this paper is as follows. In Section 2 the problem
is formulated. Subsequently, spatial feedforward is introduced in
Section 3. The conditions for the existence of solutions are formu-
lated in Section 4. In Section 5 a method to compute partial solu-
tions is provided. In Section 6 input shaping, which is used as
benchmark method, is briefly discussed. In Section 7 and 8 the
experimental validation and conclusions are presented
respectively.

2. Problem formulation

Consider a system with proportionally damped modes. Such
systems can be written in the following modal description [33]:

GðsÞ ¼ Cm Is2 þ 2ZXsþX2
h i�1

Bm ¼ CbCint½ � HðbÞðsÞ
HðintÞðsÞ

" #
Bb

Bint

� �
; ð1Þ

with Z and X diagonal, due to proportional damping. Therefore, the
matrices H(b)(s) and H(int)(s) are diagonal and contain the second
order transfer functions of the body modes and internal modes
respectively. Furthermore Bmi, i.e. the i-th row of Bm, is associated
with the i-th mode only.

The plant G(s) has nu inputs and ny outputs and is controlled
using the control structure shown in Fig. 2.

The goal is to find a static input transformation Tu,ff, such that
the body-modes are independently controllable and the flexible
modes are not excited by the feedforward, i.e. the flexible modes
are uncontrollable.

The static transformation matrices Tu,fb and Ty are used to
decouple the system as Gd = TyG Tu,fb, to allow for decentralized
feedback control. The motion m(t) represents the pose of a motion
system. The mapping between the sensors y(t) and the measured
rigid-body motion m(t) is given by:

mðtÞ ¼ TyyðtÞ; ð2Þ

where m(t) typically has dimension nb.

Remark 1. The choice of Ty is not unique, i.e. scaling or linear
combination of translations/rotations can be taken. In Section 7.4 a
choice will be made based on physical interpretation.

Definition 2 (Body mode). The body modes are defined as the set
of rigid-body and suspension modes. The number of body modes
is denoted by nb.

Definition 3 (Suspension mode). A suspension modes has, by
design, a significantly lower resonance frequency than the internal
modes, i.e. the structural stiffness of the suspension system to the
fixed world is much smaller than the body stiffness.

Definition 4 (Internal mode). The undesired flexible modes are
called the internal modes, i.e. without the suspension modes. The
number of internal modes is denoted by nr.

Definition 5. The number of internal modes to be suppressed by
spatial feedforward is denoted by nm.

Corollary 6. A single mode of a system in the form of (1) is control-
lable if and only if bmi – 0

Proof
Consider a single mode in modal from (1). The controllability of

this system can be tested by [34,35],

rank B AB½ � ¼ rank
0 bmi

bmi �2fixibmi

� �
;

which has clearly full row rank if and only if bmi – 0. h

Fig. 1. Mode shapes of a plate as an example for the problems faced in advanced
motion systems. The stage is typically measured at the edges, while processing
takes place at a different location, i.e. a good performance at the sensors does not
guarantee good performance at the location where processing takes place due to
the different dynamics.
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