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a b s t r a c t

The analytical expression for Airy-related beams generated from flat-topped Gaussian beams propagat-
ing through a paraxial ABCD optical system is derived and used to investigate its properties in the
fractional Fourier transform (FrFT) optical system. The influences of the Airy-related beam order N and
the fractional order p on the evolution of the beam intensity distribution in the FrFT system are
examined in detail. Results show that the FrFT optical system provides a convenient way for modulating
the beam profile of Airy-related beams by properly choosing optical parameters: lower order Airy-
related beams have a longer non-spreading FrFT range, in which the Airy-related beams can maintain
their original intensity distribution with no measurable spreading; and it is also found that the Airy-
related beam intensity distribution versus the fractional order is symmetrical about p¼ 1. Moreover, the
Airy-related beam intensity distribution versus the fractional order is periodical, and the period is 2. The
results obtained in this work are valuable for Airy-related beam shaping.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since non-spreading (also named non-diffraction or diffraction-
free) wave packets were predicted by Berry and Balazs [1], research
on this intriguing class of wave packets has recently attracted a lot of
interest due to their novel features [2–21]. It is known that an
intrinsic characteristic of all these diffraction-free beams is their
infinite power, which makes their experimental realization unfea-
sible. To solve the problem that ideal Airy beams are not square
integrable, exponentially decaying terms are introduced to imple-
ment finite power Airy beams by extending Berry and Balazs'
infinite-energy Airy model by Sivilogou and Christodoulides [3,4].
Even though the finite-energy Airy beams are not exact non-
diffracting solutions, these beams exhibit unique features such as
weak-diffraction [3,4], self-bending [3–6] and self-healing [7], which
are similar to those of the ideal one. These peculiar characteristics
have attracted a lot of attention from the scientific community and
have projected the finite-energy Airy beams as advantageous optical
beams for applications in optical clearing micro-particles [8], curved
plasma channel generation [9], optical micro-manipulation [10,11],
and other fields.

In general, a finite energy Airy beam can be generated from the
fundamental Gaussian beam through an optical Fourier transforma-
tion provided that a cubic phase is imposed [4]. Meanwhile, many
Airy-related beams have been proposed or generated by making
some changes in the methods of generating Airy beams [12–21]. For
example, using the partially coherent Gaussian beam as the incident
beam, a broadband “white light” Airy beam can be generated, and its
decay parameter depends on the spatial coherence of the incident
beam [12]; by adding a special apodization mask in the light path, a
reduced side-lobe Airy beam can be generated that has an effectively
enhanced central lobe, and the side lobe is reduced compared with
the common Airy beam [13]; by Airy transforming of flat-topped
Gaussian beams, the intensity profile and the propagation character-
istics of the Airy-related beams can be modulated through the beam
order [19]; generated from a sharply truncated Airy spectrum with
uniform amplitude, the sharp spectral cutoff causes the beam to
differ from the ideal Airy beam, having an extra oscillating modula-
tion in addition to the desired decay of its fringes [20].

On the other hand, fractional Fourier transform (FrFT), as the
generalization of a conventional Fourier transform, was first
proposed as a new mathematical tool for solving physics problems
by Namias in 1980 [22], and subsequently its potential applica-
tions in optics were first explored in 1993 by Mendlovic, Ozaktas
and Lohmann [23–25]. Since then FrFT has found wide applica-
tions in signal processing, optical image encryption, beam shaping
and beam analysis [26–31]. Recently, much work has been done
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about their FrFT for various types of beam frequently used in
modern optics [32–41]. However, to the best of our knowledge,
no results have been reported until now about the propagation
properties of the Airy-related beams generated from flat-topped
Gaussian beams in the FrFT optical system. In this work, we
investigate the propagation properties of the Airy-related beams
through the FrFT optical system. The paper is structured as follows:
in Section 2, propagation analytical expression for the Airy-related
beams generated from flat-topped Gaussian beams through a
paraxial optical ABCD system is derived. In Section 3, the evolution
of the target beams' intensity distribution in the FrFT system and its
dependence influences of several parameters are discussed in
detail, and illustrated numerically by using the derived formulas.
Finally, the mail results obtained are summarized in Section 4.

2. Fractional Fourier transform of Airy-related beams
generated from flat-topped Gaussian beams

From the optical point of view, three kinds of optical systems
for performing the FrFT are proposed [23–25] and shown in Fig. 1,
which are the Lohmann I system, the Lohmann II system, and the
quadratic graded index (GRIN) medium. Here f s is the standard
focal length, Φ¼ pπ=2 with p being the fractional order, and z is
the axial distance between the input and output planes along the
optical axis in the GRIN medium. According to Matrix Optics, the
transfer matrix for Lohmann I optical system can be described by

R1 ¼
A B

C D

� �
¼ 1 f s tan ðΦ=2Þ

0 1

� � 1 0
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 !
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For Lohmann II optical system, the corresponding transfer
matrix can be described by
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C D
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1 0
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For the GRIN system, the transfer matrix, with quadratic index
variation nðrÞ ¼ n0ð1�r2=ð2a2ÞÞ, can be written as [42]

R3 ¼
A B

C D

� �
¼

cos ðz=aÞ a sin ðz=aÞ
�1

a sin ðz=aÞ cos ðz=aÞ

 !
: ð3Þ

where a denotes the radius of the GRIN medium. Obviously,
Eqs. (1)–(3) have the same form when f s ¼ a, and Φ¼ z=a. Hence,
the above mentioned three optical systems have the same transfer
matrix and they are equivalent.

In the Cartesian coordinate system, the z-axis is taken to be the
propagation axis. The electric field profile of one-dimensional (1D)
Airy-related beams generated from flat-topped Gaussian beams in
the source plane z¼ 0 takes the form as [19]

E1ðx1; z¼ 0Þ ¼ 2
ffiffiffi
π

p
A0

XN
n ¼ 1

ð�1Þn�1 ffiffiffiffiffi
an

p
N

N

n
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2a3n
3

� �

�Ai
x1
x0

þa2n

� �
exp

anx1
x0

� �
: ð4Þ

A symmetric two-dimensional (2D) case can be obtained by
replacing the coordinate x with y, and multiplying the two scalar
fields together. In Eq. (4), Ai Uð Þ indicates the Airy function, x1=x0
represents a dimensionless transverse coordinate, x0 denotes an
arbitrary transverse scale, an ¼w2

0=ð4nx20Þ represents the modula-
tion parameter so as to ensure containment of the infinite Airy tail,
A0 is a constant related with the beam power, N denotes the order

Fig. 1. Three kinds of optical systems for performing the FrFT (a) Lohmann I system, (b) Lohmann II system and (c) GRIN system.

Fig. 2. The normalized intensity distribution of (a) flat-topped Gaussian beams and (b) Airy-related beams generated from flat-topped Gaussian beams of different orders N.
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