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a b s t r a c t

Laser welding is a widely used but complex industrial process. In this work, we propose the use of an
integrated machine intelligence architecture to help address the significant control difficulties that
prevent laser welding from seeing its full potential in process engineering and production. This architec-
ture combines three contemporary machine learning techniques to allow a laser welding controller to
learn and improve in a self-directed manner. As a first contribution of this work, we show how a deep,
auto-encoding neural network is capable of extracting salient, low-dimensional features from real
high-dimensional laser welding data. As a second contribution and novel integration step, these features
are then used as input to a temporal-difference learning algorithm (in this case a general-value-function
learner) to acquire important real-time information about the process of laser welding; temporally
extended predictions are used in combination with deep learning to directly map sensor data to the final
quality of a welding seam. As a third contribution and final part of our proposed architecture, we suggest
that deep learning features and general-value-function predictions can be beneficially combined with
actor–critic reinforcement learning to learn context-appropriate control policies to govern welding
power in real time. Preliminary control results are demonstrated using multiple runs with a laser-
welding simulator. The proposed intelligent laser-welding architecture combines representation, predic-
tion, and control learning: three of the main hallmarks of an intelligent system. As such, we suggest that
an integration approach like the one described in this work has the capacity to improve laser welding
performance without ongoing and time-intensive human assistance. Our architecture therefore promises
to address several key requirements of modern industry. To our knowledge, this architecture is the first
demonstrated combination of deep learning and general value functions. It also represents the first use of
deep learning for laser welding specifically and production engineering in general. We believe that it
would be straightforward to adapt our architecture for use in other industrial and production engineering
settings.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Laser welding is a precise and fast welding technique that sees
widespread use in industrial welding systems [1]. Unfortunately,
laser welding is a complex process that is often hard to control
[2]. To address control difficulties, recent research has
demonstrated cognitive laser welding systems that perform well
on a defined work piece after setup [3]. Nevertheless, cognitive
control is still in an early stage of development [4], and to fulfill
the requirements of modern industry, systems must have the

flexibility to deal with changing conditions without the need for
demanding and time-intensive manual setup [5].

To address the need for both rapid setup times and welding
system flexibility, we propose the idea of a self-learning and self-
improving laser-welding system that would be able to perform
well under changing circumstances. As a classical model-based
approach is not feasible due to the dynamics and uncertainty
inherent to the process, we suggest applying machine learning
techniques. Our proposed approach brings together a selection of
modern machine learning techniques, including deep-learning
neural networks for generating state representations and
state-of-the-art reinforcement learning prediction and control
algorithms. These algorithms empower the system to leverage
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important aspects of intelligence during welding, namely percep-
tion, prediction, and interaction.

Representation: As a laser-welding system’s sensor signals are
multidimensional and multimodal, it is often not realistic to use
them directly as an input for real-time control learning algorithms.
Building on established ideas in dimensionality reduction, we
therefore use a representation-learning (perception) algorithm to
transform the raw sensor data into a low-dimensional and
transformation-invariant representation of the systems state. The
system learns to abstract its inputs. In particular, a technique that
has shown its capability to produce the lowest classification error
for various problems when used for feature extraction is deep
learning [6]. Furthermore, deep auto-encoders have been shown
to successfully compete with state-of-the art feature extraction
techniques (e.g., principal component analysis, linear discriminant
analysis) [7] and improved [8] or directly learned [9,10] policies for
high-dimensional image data in reinforcement learning. Stacked
denoising auto-encoders have shown the capability of achieving
a general representation, which leads to more robustness against
varying data and overfitting [11].

Prediction: A very common problem in industry is the inability
to directly measure process quality. There are several approaches
to this issue, e.g., system models, envelope curves or look-up
tables. But these techniques are restricted either in applicability
(a priori model), accuracy (envelope curves) or scalability (look-
up tables). They are also limited in their capability to adapt to
changes. To deal with these issues, we include predictions about
process quality and state as an important part of intelligence [12]
in our architecture; importantly, we suggest that predictions
should be able to be learned and adapted during the ongoing oper-
ation of a system. To date, prediction learning has been dominated
by linear models that are difficult to apply to nonlinear and time-
varying problems [13]. These problems have been overcome by
recent research using the temporal-difference (TD) reinforcement
learning approach [14]. New techniques have extended classical
TD-learning to allow generalized online predictions [15]. We
include these predictions into our proposed system using a tempo-
rally extended prediction approach called nexting [16] with
general value functions, an approach that is capable of learning
and making real-time predictions at multiple timescales.

Control: There exist a number of different controllers for indus-
trial applications, e.g., PID-controllers, adaptive controllers and
fuzzy controllers. Given a correct and accessible quality measure-
ment, it would be easy to implement these techniques for laser
welding. But all these approaches need a time-consuming and
human assisted setup process and do not work well for changing
conditions. To enable our architecture to provide a high-quality
welding seam on its own, it is necessary to have a controller that
can learn from experience and improve its own performance.
Therefore we suggest a machine learning algorithm, namely an
actor–critic reinforcement learning (ACRL) algorithm [17]. This
type of algorithm consists of two parts: an actor and a critic. The
actor takes actions according to a learned policy while the critic
evaluates these actions. The actor–critic algorithm has several
characteristics that are useful for our specific control problem. As
ACRL algorithms are parameter based, their computation can be
done incrementally (linearly) and they can be updated within mil-
liseconds. Due to the fact that experience—from which the algo-
rithm already had learned—does not need to be stored, the
memory requirements do not increase over time [18]. By using
function approximation they also scale well to real world prob-
lems; this has been shown in various applications [19–22].

Our proposed architecture [23] for integrating representation,
prediction and control in laser welding therefore promises to

address key industry needs relating to both the calibration and
optimization of diverse welding processes. It is described in the
remainder of this manuscript as follows. Section 2 describes the
laser welding system and the monitoring, as well as how the algo-
rithms will work together in the proposed architecture. Section 3
focuses on deep learning and how features are generated via deep
auto-encoders from the existing sensor input. These features are
the input for the reinforcement learning algorithms, explained
and evaluated in Section 4. The results are discussed in Section 5
and followed by concluding remarks in Section 6.

2. Laser welding and the proposed architecture

2.1. The laser welding process and monitoring

Although laser welding is quite common in industrial applica-
tions, it is still necessary to closely and consistently monitor and
control the process [24]. Despite the environmental uncertainties
that the process is exposed to, like changes in temperature, humid-
ity or the welding gas quality, there are also uncertainties caused
by the material. These include, but are not limited to, changes in
the chemical compounding, and the thickness and contamination
of the surface. Fig. 1 illustrates examples for laser welds with
different quality.

In our setting, process monitoring is done by a camera-based
system and photodiodes, which is a common setting in laser weld-
ing applications [25]. As the keyhole, which is the area where the
laser hits the material, oscillates with a typical frequency of
500 Hz [26], all sensors have to sample with at least twice this fre-
quency. This can be considered as a benchmark real-time capabil-
ity for the process. The camera can sample at rates of up to
1500 Hz. It provides important information about geometrical
parameters of the observed keyhole [27] with a resolution of
144� 176 pixels. Additionally, the process is observed by three
photodiodes, sampling at 40 kHz and corresponding to different
wavelengths. The first diode observes the process temperature at
the wavelength between 1100 nm and 1800 nm. The second
observes the plasma radiation at a wavelength of 400–600 nm.
The third diode records the laser back reflection at 1050–1080 nm.

2.2. Architecture

Laser welding is a dynamic process with high uncertainty and
therefore it is not feasible to build a precise model of the process,
which would be the classical control approach. We therefore pro-
pose a machine learning approach. Our suggested architecture
combines deep neural networks (DNN) [7] with reinforcement
learning algorithms [28].

Fig. 2 shows the architecture, which consists of three parts: rep-
resentation, process knowledge (prediction), and process control.
In the first part—deep learning of representations—the monitored
sensor data is processed and transformed into informative features
which are lower in dimension to ensure real-time capability and
robustness. By doing so, the system is able to detect its current
state only by the provided sensor data and is therefore more
invariant to environmental changes. These features are used in
the second part—prediction—to build up knowledge about the pro-
cess. By using temporally extended predictions, the system has the
capacity to evaluate its current performance and predict how its
actions might impact its performance in the future. The features
from the representation and the knowledge from the second part
are combined in the third part—process control—to control the sys-
tem in terms of the laser power applied to the welding surface.
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