Mechatronics 34 (2016) 72-77

Contents lists available at ScienceDirect

Mechatronics

Mechatronics

journal homepage: www.elsevier.com/locate/mechatronics

Self-reconfiguration of real-time communication in cyber-physical

systems

@ CrossMark

Jan Jatzkowski *, Bernd Kleinjohann

Cooperative Computing & Communication Laboratory (C-LAB), University of Paderborn, Fuerstenallee 11, 33102 Paderborn, Germany

ARTICLE INFO

Article history:

Received 16 October 2014
Revised 10 February 2015
Accepted 19 April 2015
Available online 6 May 2015

Keywords:

Cyber physical systems
Distributed embedded systems
Dynamic reconfiguration
Plug-and-Produce

Real-time communication
Real-time systems

ABSTRACT

Today, in domains like automation and robotics systems consist of various sensors and computation
nodes. Due to the temporal dependency in quality of measured data, such Cyber-Physical Systems
(CPS) commonly have real-time requirements on communication. In addition, these systems shall
become more flexible and scalable, e.g., by adding new components to the CPS. This would be most suit-
able if a CPS could react to the presence of a new component and reconfigure itself to run afterward with
the new component integrated to the CPS. This capability is covered by the term Plug-and-Produce. In
this paper, we propose a concept to enable Plug-and-Produce within a CPS whose network uses different
communication media, e.g., Ethernet and CAN. To enable real-time communication provided by different
communication protocols, their different synchronization mechanisms have to be combined to get a com-
mon time base within the entire system. For this purpose, we consider Ethernet as well as CAN-based
real-time communication protocols and their synchronization mechanisms. The proposed concept for
self-reconfiguration aims to be integrated into our three layered software architecture that is presented

as well.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, interaction between a variety of system components
controlling physical entities becomes more and more important. In
[1], Lee and Seshia define that Cyber-Physical Systems (CPS) are
about the intersection of these physical and cyber entities.
Depending on the application domain, these systems require at
least partial real-time communication and in case of dynamically
adaptable systems, this even implies reliable reconfiguration of
the communication, especially real-time communication.
Although such reconfiguration is already manually practicable, this
process is error-prone and strongly time consuming due to user
interaction. To overcome these issues, self-reconfiguration of such
systems is required. In automation domain, e.g., self-reconfigura-
tion after modification of a production line promises not only to
be less error-prone and time-consuming, but also enables a higher
utilization of available system components and cost reduction. To
enable self-reconfiguration of real-time communication within
CPS, we present a three layered software architecture based on
the ISO/OSI reference model: Each node of the networked system

* Corresponding author.
E-mail addresses: jan.jatzkowski@c-lab.de (J. Jatzkowski), bernd.kleinjohann@
c-lab.de (B. Kleinjohann).

http://dx.doi.org/10.1016/j.mechatronics.2015.04.014
0957-4158/© 2015 Elsevier Ltd. All rights reserved.

has an application, middleware, and connectivity layer. While ele-
ments of the application layer represent particular functionality of
a system component’s application domain, the connectivity layer
provides the interfaces to the communication channels provided
by the hardware of a system component. The middleware layer
connects the application and connectivity layer and is responsible
for managing inter-node communication, i.e. communication
between applications mapped on different nodes of a networked
system. A first description of the corresponding concepts is given
in [2]. To enable real-time capabilities within a system utilizing
different communication protocols without violating these proto-
cols’ specifications, we have to combine their communication
mechanisms to establish a common time base. Therefore, the pre-
sented middleware does also cover time synchronization in such a
Heterogeneous system. Due to this, we further provide an over-
view of particular synchronization mechanisms used by consid-
ered communication protocols.

In this paper, we focus on the middleware layer of our archi-
tecture, especially on real-time communication and its automatic
reconfiguration. Real-time communication is usually realized by a
time-triggered approach, i.e. time slots are assigned to nodes that
are only allowed to send information within these assigned slots.
The proposed self-reconfiguration concept considers modifica-
tions like integration of new components to the overall system,


http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechatronics.2015.04.014&domain=pdf
http://dx.doi.org/10.1016/j.mechatronics.2015.04.014
mailto:jan.jatzkowski@c-lab.de
mailto:bernd.kleinjohann@ c-lab.de
mailto:bernd.kleinjohann@ c-lab.de
http://dx.doi.org/10.1016/j.mechatronics.2015.04.014
http://www.sciencedirect.com/science/journal/09574158
http://www.elsevier.com/locate/mechatronics

J. Jatzkowski, B. Kleinjohann / Mechatronics 34 (2016) 72-77 73

i.e. Plug-and-Produce capabilities. Safe modifications are realized
by means of pre-defined time slots that are reserved, e.g., for
introduction of new system components into the CPS. When such
a modification is registered by the CPS, a self-reconfiguration pro-
cess is started within the middleware layer. During this reconfig-
uration, our approach considers the required communication
from application layer and creates a new assignment of time slots
to system components guaranteeing required real-time capabili-
ties. While the self-reconfiguration process itself does not need
to provide real-time capabilities, its result has to guarantee the
real-time requirements of the new system configuration.

Thus, the main contribution of this paper is the description of
our concept for reconfiguration of real-time communication within
a CPS by utilizing a common time-triggered communication mech-
anism that abstracts from real-time protocol specific characteris-
tics. This way, our middleware will enable handling real-time
communication requests from application software resided in
application layer without knowledge of the real-time communica-
tion protocols provided by the connectivity layer that manages
hardware interfaces. In addition, to enable Plug-and-Produce capa-
bilities our concept is designed to have particular slots reserved for
registering new components added to a CPS.

The remainder of this paper is structured as follows. In
Section 2, fundamentals about Plug-and-Produce as well as real-
time communication are presented that are used to compare the
presented concept with related work. Then, related work is
described in Section 3. Our concept for self-reconfiguration is pre-
sented in Section 4. Here, we will discuss time synchronization of
particular communication protocols as well. This way, we can
identify capabilities to synchronize different protocols and estab-
lish a common time base. Finally, the paper is closed by a conclu-
sion and outlook in Section 5.

2. Fundamentals

This section provides fundamentals about concepts of Plug-
and-Produce and real-time communication. This will support
the analysis of related work in Section 3 as well as classifica-
tion of the proposed concept for self-reconfiguration presented
in Section 4.

2.1. Plug-and-Produce

Plug-and-Produce is known from domains like automation and
robotics. It is based on the Plug-and-Play technology that originally
was developed for general purpose computers as used in office
applications and is known, e.g., from the commonly used
Universal Serial Bus (USB). Due to the domain-specific require-
ments of automation and robotics, the term Plug-and-Produce
was introduced by the EU funded project SMErobot [3]. In [4],
Naumann et al. focus on robot cells at shop floors and define
Plug-and-Produce as the ability to add devices to a robot cell and
to use the functionality of these devices without the need of con-
figuration. Based on this definition, they define three Plug-and-
Produce layers:

Application Offers automatically services to the user depending
on the available functionality.

Configuration Configures default values, bandwidth require-
ments, etc.

Communication Deals with communication protocols and pro-
vides, e.g., discovery and addressing of devices.

These layers are hierarchically ordered: Plug-and-Produce on
Application layer requires Plug-and-Produce on Configuration

layer; Plug-and-Produce on Configuration layer requires Plug-
and-Produce on Communication layer.

To compare our concept with state-of-the-art approaches and
highlight differences more precisely, we use an additional way to
classify Plug-and-Produce respectively Plug-and-Play implementa-
tions. This classification depends on the system performance and is
given by Zimmermann et al. [5]:

Cold The entire system is shot down, new components are con-
nected and finally, the system is switched on again.
Reconfigurations needed due to the modifications of the system
are processed during start-up phase.

Hot Components are added to or removed from the system dur-
ing runtime. However, running applications must not be dis-
turbed by this process.

Coordinated Adding and removing of components is user or
program controlled. This way, modification of a system is no
longer enabled at an arbitrary point in time, but rather
announced to the system. Thus, running applications cannot
be disturbed by a randomly occurring reconfiguration process.

These two complementary ways to classify Plug-and-Produce
approaches will be considered for related work in Section 3.

2.2. Real-time communication

Due to the interaction between physical and computational
entities within a CPS, timing behavior of communication is impor-
tant for correctness of results produced by a CPS. Not only the mea-
surements of sensors and processing of theses measured data but
also the transmissions of these data have to be finished before a
pre-defined deadline to achieve correct behavior of a CPS.
Therefore, Kopetz states that real time is an integrated part of
the real world that cannot be abstracted away [6]. In [7],
Buttazzo distinguishes three levels of real-time depending on the
consequences of missing a deadline: hard, firm, and soft real-time.
In soft real-time systems, missing a deadline causes performance
degradation, but results can still be useful for the system. In con-
trast, results of a firm real-time system are useless when missing
a deadline and in hard real-time systems, missing a deadline
may even cause catastrophic consequences on the controlled sys-
tem. Consequently, different real-time systems can differ with
respect to the consequences of missing a deadline although all of
them are labeled real-time.

With respect to real-time communication, Kopetz defines a set
of requirements including timeliness and flexibility [8]. Timeliness
covers among others clock synchronization, i.e. a global time base
is required. This way, observations like sensor measurements are
guaranteed to be temporally relevant for the controlled system
when processed by a computation node. Flexibility refers to the
adaptation capabilities of real-time communication in case of dif-
ferent supported system configurations that can change over time.
It should be possible to add new sensors and/or computation nodes
to a CPS without violating temporal guarantees of the original CPS.
However, flexibility is limited by the bandwidth available by the
given communication channels.

In the automation and robotic domain, communication is often
based on Ethernet as well as Controller Area Network (CAN) as pro-
tocols to realize physical and data link layer of the standardized
OSI 7-layer reference model. Ethernet and CAN both are capable
of event-triggered communication. Since events can occur at an
arbitrary point in time, i.e. randomly, no temporal guarantees can
be provided in general. For instance, two sensors want to transmit
their data at the same time via the same communication channel
to the same computation node. In case of Ethernet, this would
result in a collision that has to be handled by the protocol. In case



Download English Version:

https://daneshyari.com/en/article/732298

Download Persian Version:

https://daneshyari.com/article/732298

Daneshyari.com


https://daneshyari.com/en/article/732298
https://daneshyari.com/article/732298
https://daneshyari.com

