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a b s t r a c t

Precise predictions of wind speed play important role in determining the feasibility of harnessing wind
energy. In fact, reliable wind predictions offer secure and minimal economic risk situation to operators
and investors. This paper presents a new model based upon extreme learning machine (ELM) for
sensor-less estimation of wind speed based on wind turbine parameters. The inputs for estimating the
wind speed are wind turbine power coefficient, blade pitch angle, and rotational speed. In order to val-
idate authors compared prediction of ELM model with the predictions with genetic programming (GP),
artificial neural network (ANN) and support vector machine with radial basis kernel function
(SVM-RBF). This investigation analyzed the reliability of these computational models using the simula-
tion results and three statistical tests. The three statistical tests includes the Pearson correlation coeffi-
cient, coefficient of determination and root-mean-square error. Finally, this study compared predicted
wind speeds from each method against actual measurement data. Simulation results, clearly demonstrate
that ELM can be utilized effectively in applications of sensor-less wind speed predictions. Concisely, the
survey results show that the proposed ELM model is suitable and precise for sensor-less wind speed pre-
dictions and has much higher performance than the other approaches examined in this study.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Wind speed plays important role in operation and management
of wind energy [1]. Investigators directly measure or estimate
speed of the wind. Measurement of wind speed is considered most
difficult among various climatological variables [2,3]. Nevertheless,
it is important for wind energy systems to accurately measure and
estimate wind speed [4,5]. Report from the Intergovernmental
Panel on Climate Change [51] raises concern on global warming.
Therefore, various nations are looking to increase their share of
energy consumption from renewable sources such as wind energy.

Many wind energy systems use generation systems with vari-
able speed [6] as it extracts more wind power than a system that
works at constant speed [7,8]. Rotation speed of turbine shaft
adapts to varying wind speed to extract maximum power [9]. In

other words, the main feature of variable generation system is
rotation speed of turbine shaft adapts according to wind speed
[9–11]. Normally, engineers deploy wind speed anemometers for
measuring wind speed. However, high coast of wind anemometers
discourage their usage in broad applications. For example in one
wind farm one anemometer cannot be used since wind speed var-
ies from one turbine to another [12–15]. Therefore, engineers
replace anemometers with digital estimators for broad application
like wind farm [16,17]. Digital wind estimator’s working principal
is based on the characteristics of wind turbines. For this reasons, it
is desirable to replace the mechanical anemometers by the digital
wind-speed estimator based on the turbine attribute [16,17].
Published literature report many wind speed estimation methods
[18–23].

In addition to traditional methods, soft computing methods can
be used for estimating speed of wind. Soft computing methods do
not require knowledge on internal system variables. In addition, it
offers advantages such as simpler solutions for multi-variable
problems and factual calculation [24]. Soft computing is a novel
approach for making computationally intelligent systems.
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According to Zadeh [25], soft computing is an excellent technique
that implements nature and human intelligence to understand an
environment of imprecision and uncertainty.

Recent research works have applied the Neural network (NN) as
a major computational approach in different fields [26–28]. NN
uses the classic parametric approach for solving complex nonlinear
problems. There are many algorithms for training neural network
such as back propagation, support vector machine (SVM), and hid-
den Markov model (HMM). However, researchers consider longer
learning time of NN as drawback. Huang et al. [29,30] introduced
an algorithm for single layer feed forward NN which is known as
Extreme Learning Machine (ELM). Use of ELM decreases time
required for training the neural networks. In fact, it has been
proved that by utilizing the ELM, learning becomes very fast and
it produces good generalization performance [31]. Researchers
have applied ELM for solving problems in many scientific areas
[32–37]. ELM is a powerful algorithm with faster learning speed
comparing with traditional algorithms like back-propagation
(BP). It also has a better performance too. ELM tries to get the
smallest training error and norm of weights.

Fewer studies were found on application of ELM in wind energy
area. Wu et al. [38] performed an investigation to develop an ELM
based model for estimating wind speed and sensorless control of
wind turbine systems. Salcedo-Sanz et al. [39] combined the coral
reefs optimization (CRO) with extreme learning machine (ELM) to
predict short term wind speed in a wind farm in USA. Wan et al.
[40] using extreme learning machine (ELM) proposed a model for
short-term probabilistic wind power forecasting fora wind farm
in Australia.

Literature review of this work found that no research work till
date applied ELM for sensorless estimation of wind speed based
main parameters of wind turbine. Therefore, this research work
developed an ELM-based model for sensorless estimation of wind
speed. Further this investigation derives a correlation between
wind speed and main parameters of wind turbines such as, power
coefficient, blade pitch angle and rotor speed. The merit of extreme
learning machine was verified by comparing its predictions accu-
racy with support vector machine with radial basis kernel function
(SVM-RBF), Artificial Neural Network (ANN) and Genetic
Programming (GP) successfully employed in sensorless wind speed
area estimations. The developed model would estimate the wind
speed without using active sensors.

2. Wind speed model

Available power from wind energy is function of swept area of
turbine blade, density of air, wind speed, and height of rotor. The
available power is given as:

Pw ¼
1
2
qAv3 ð1Þ

where Pw is the available power in Watt, q is the density of air in
kg/m3, and v is the speed of wind m/s and A is the swept are of rotor
blades ðm2Þ. Wind turbines capture only a part of this available
power due to mechanical and operational losses. The ratio of cap-
tured power to available power is called the power coefficient
ðCpÞ, and which is function of the effective wind speed Ve, blade
pitch angle b, rotor radius R, and rotor speed Xr . The value of Cp

can be expressed as [10]:

Cp b;Ve;Xr;Rð Þ ¼ 0:5176
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Primary objective of this work is to express wind speed Ve in terms
of three turbine parameters: blade pitch angle b, rotor speed Xr and
power coefficient Cp for rotor radius R ¼ 75 m; expressed as
Ve Cp;b;Xr
� �

. For this purpose, this study used ELM. Later ELM esti-
mated wind speed using three wind turbine parameters.

2.1. Input parameters

Soft computing technique used the measured parameters of
wind turbine as their input. Neural network training and testing
used 70% and 30% of the measured data respectively. Table 1 shows
summary of the input parameters.

3. Extreme learning machine

Extreme Learning Machine (ELM) algorithm was introduced as a
learning tool for feed-forward neural network (SLFN) architecture
with single layer [29,41,42]. ELM randomly selects the input
weights and analytically computes SLFN output weights. ELM algo-
rithm has favorable general capability with faster learning speed.
This algorithm does not require too much human intervention,
and can run much faster than the conventional algorithms. It ana-
lytically determines the network parameters and hence requires
no human interventions. ELM is an efficient algorithm with numer-
ous advantages including ease of use, higher performance, quick
learning speed, suitability for nonlinear activation and kernel
functions.

3.1. Single hidden layer feed-forward neural network

Single hidden layer feed-forward neural network (SLFN) oper-
ates using L hidden nodes. Mathematical representation of SLFN
unifies additive and RBF hidden nodes as given below [43,44]:

f L xð Þ ¼
XL

i¼1

biG ai; bi; xð Þ; x 2 Rn; ai 2 Rn ð3Þ

where ai and bi are the hidden nodes learning parameters. bi is the
weight which connects the ith hidden node and the output node.
Gðai; bi; xÞ shows the output value of the ith hidden node for the
input x. The additive hidden node with the activation function of
g xð Þ : R! R (e.g., sigmoid and threshold), G ai; bi; xð Þ is [41]:

G ai; bi; xð Þ ¼ g ai � xþ bið Þ; bi 2 R ð4Þ

where ai denotes the weight vector which connects the input layer
and ith hidden node. Also, bi is the bias of the ith hidden node ai. x is
the inner product of vector ai and x in Rn. Using Eq. (4) can find
G ai; bi; xð Þ for RBF hidden node with activation function
g xð Þ : R! R (e.g., Gaussian) [41]:

G ai; bi; xð Þ ¼ g bi x� aik kð Þ; bi 2 Rþ ð5Þ

ai and bi represent the center and impact factor of ith RBF node. Rþ

represents set of all positive real values. A particular case of SLFN
that has RBF nodes in its hidden layer forms RBF network. For N,
arbitrary distinct samples xi; tið Þ 2 Rn � Rm where, n� 1 input vector
is represented by xi and m� 1 target vector is represented by ti. If

Table 1
Brief of the input parameters.

Mean Maximum Minimum

Power coefficient (Cp) 0.2 0.4 0.06
Blade pitch angle (deg) 20.5 45 0
Rotor speed (rpm) 7.9 13.3 1.03
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