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a b s t r a c t

The rotor displacement measurement plays an important role in an active bearing system, however, in
practice this measurement might be quite noisy, so that the control performance might be seriously
degraded. In this paper, a soft sensing method for magnetic bearing-rotor system based on Support Vec-
tor Regression (SVR) and Extended Kalman Filter (EKF) is proposed. In the proposed method, SVR tech-
nique is applied to model the acceleration of the rotor, which is regarded as a nonlinear function of
rotor displacement, rotor velocity and bearing currents; then this SVR model is used to construct an
EKF estimator of rotor displacement. In the proposed method the bearing current is incorporated to
the estimation of displacement, so that displacement can be precisely estimated even if very large obser-
vation noise is present. A series of experiments are performed and the results verify the validity of the
proposed displacement soft sensing method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Compared with conventional bearings, active magnetic bearings
(AMBs) [1,2] possess several attractive advantages, such as no fric-
tion, no need of lubrication, and the ability of long-term high speed
running. An AMB system includes the following parts: a rotor,
bearings, sensors, a power amplifier and a controller. The sensors
measure the rotor displacement real-timely, based on this mea-
surement, the controller computes the control signal, the power
amplifier transforms this signal to control current and feeds the
current to the bearings, and the bearing generate magnetic force
to hold the rotor in the suspension position.

In an AMB system, the lateral displacement of the rotor can be
measured by the displacement sensors, this measurement plays an
important role in the control loop and significantly affects the con-
trol performance. Nevertheless, in practice the displacement signal
may be quite noisy, especially when high power motors or inver-
tors are nearby. The noisy signal may result in poor suspension
stability and terrible acoustic noise. The main idea of this paper
is that the noise in measurement can be eliminated based on a
precise rotor-bearing model, in other words, this paper offers a
model-based soft sensing method of rotor displacement in an
AMB system. More precisely, we notice that if a precise model of

rotor displacement-bearing current is available, the displacement
measurement can be significantly improved in that the bearing
current is involved into measurement and this additional informa-
tion will help to eliminate the noise of the displacement
measurement.

Soft sensing [3–5] is an approach to estimate hard-to-measure
variables of a dynamic system from easy-to-measure variables.
The soft sensing technique can also be applied to improve the mea-
surement quality of some variables by incorporating information
from various sources. However, to our best knowledge no achieve-
ment of soft sensing of magnetic bearing systems is reported. The
model of plant is the most important part of a soft sensing method.
The characteristics of an AMB system can be modeled theoretically
and it is usually approximated by linearized models, however, they
are inherently nonlinear. The most important source of nonlinear-
ity is the force-current relationship of the bearing [6,7], due to
magnetic hysteresis, machining error, eddy effect and the inaccu-
rate and inconsistent magnetic property of iron core, in practice
the theoretical model and the linearized model of bearings are
sometimes not precise enough. The rotor model, namely the
force-displacement relationship, is normally regarded as linear as
well and can be calculated by finite element method and other
numerical methods [8], but a practical rotor is usually quite com-
plex, it may compose of many different parts, these parts may join
together by screw thread, shrink-fitting and other connections, all
these will lead to nonlinearity and inaccuracy of the rotor model.
Moreover, the magnetic bearings introduce the so-called ‘‘negative
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stiffness’’, namely the current-displacement relationship of the
bearing-rotor system is open-loop unstable. Thus a linear-model-
based soft sensing method for AMB system highly relies on the
observations and will be negatively affected by the observation
noise.

Some researches on the nonlinear modeling of magnetic bear-
ing systems are reported [7,9–11], all these works are based on
parametrical regression technique, namely some mechanism and/
or empirical models are utilized in modeling. Unlike these meth-
ods, in this paper a nonparametric modeling method is applied
to establish a static model, and this static model is utilized to make
dynamical estimation of the rotor-displacement. On the other
hand, many achievements of soft sensing based on Neural Network
(NN) are published [12–16], however, in this paper we apply Sup-
port Vector Regression (SVR) technique [17,18] as a modeling
method, since according to the statistical learning theory [19] it
outperforms NN in generalization performance.

For a rotating rotor, suppose an impulse tachometer is mounted
and signals can be divided into periods according to the tachome-
ter pulses. Then the proposed method includes the following steps:
(1) The velocity and acceleration of the rotor is estimated from the
displacements in the recent periods. Considering the response is
periodic, this estimation can be precise enough even if the dis-
placement data is very noisy. (2) The rotor acceleration-bearing
current relationship is established by SVR. (3) The Extended
Kalman Filter (EKF) [20] method is applied to make rotor displace-
ment estimation by incorporating the displacement measurement
and the estimated acceleration together. These steps can be per-
formed online to realize real-time displacement sensing.

An experimental system with a five degrees-of-freedom (DOF)
suspended rotor (about 3.5 m long and 630 kg heavy) is utilized
to perform a series of experiments and validate the proposed
method. The experimental results show the validity of the pro-
posed method.

In this paper, the motion of the rotor in a radial plane is consid-
ered. Two displacement sensors are utilized to measure the rotor’s
lateral displacements. The lateral displacements are denoted by x1

and x2, respectively. The velocities of the rotor (i.e. the derivative of
x1 and x2) will be denoted as _x1 and _x2 and the accelerations of the
rotor as €x1 and €x2. The notations ix1þ and ix1� stand for the currents
in the plus and minus coils of the magnetic bearing x1. All involved
signals are sampled at discrete time instants j ¼ 1;2; . . . . A signal
(say x1) at sampling instant j is denoted by x1 jð Þ. The rotational
speed of the rotor is measured by an impulse tachometer in which
each revolution of the rotor generates an electric pulse. Suppose
the tachometer pulses occur at time instants p1; p2; . . . . We define
that the kth rotational period is started at time instant pk�1 þ 1ð Þ
and ended at pk.

2. An introduction to support vector regression

Support vector regression (SVR) is a novel nonparametric mod-
eling method. It can offer regression of real-valued functions based
on observed samples. SVR is very popular in machine learning, pat-
tern recognition, artificial intelligence and the related regions.
However, it might be not so well-known for researchers in the
range of mechatronics. Thus in this section we offer a brief intro-
duction to SVR.

The SVR possesses the following attractive features: (1) A large
class of modeling problems can be treated with SVR, since by SVR
modeling the only mathematical assumption on the actual model
is the Lipschitz continuity. (2) SVR is a nonparametric modeling
method, that is, no prior model is needed in modeling. (3) The com-
putational complexity of an SVR hardly depends on the dimension
of the problem. (4) SVR is a distribution-free method, i.e. no prior-

knowledge or assumptions on the distribution of the samples are
needed other than that all samples are generated independently
from the same distribution. (5) The generalization ability of SVR
is ensured theoretically. The generalization ability is the precision
(in the statistical sense) of a modeling method when only finite
samples are available. Based on the statistical learning theory
[19], the generalization ability of SVR can be estimated, that is,
the boundary on modeling error of an SVR can be calculated in
the statistical sense. With these features, SVR provides solutions
to many complex modeling problems.

The ensured generalization ability is the most important and
attractive feature of SVR, in contrast, the generalization perfor-
mance of neural network methods may depend on the network
structure and train algorithm and can hardly be controlled. As a
result, applying NN methods requires more understanding of the
problem and practical tricks in adjusting structure and parameters
and hyper-parameters and the risk of overfitting can hardly be pre-
vented. By applying SVR method these defects are much less
serious.

SVR is a sample-based modeling method. When some input-
output relationship have to be modeled, some training samples
(input-output pairs ðn; fÞ) should be observed first, then an SVR
model can be established. The process of establishing the SVR mod-
el based on the training samples is usually called as ‘‘training’’ and
the algorithm for training is called as ‘‘training algorithm’’. For a
new input n0, the SVR model predicts the corresponding output
according to the relationship of the training samples and new sam-
ple n0. Mathematically, the collection of samples is usually assumed
to be a subset of some topological space, however, in practice it is
common to assume that the samples lie in the real vector space,
namely ðn; fÞ 2 Rn �R, where n is called as ‘‘sample dimension’’.

SVR is a kernel method, that is, a kernel function is applied to
evaluate the relationship between various samples. A kernel func-
tion K : Rn �Rn#R is a bivariable real-valued function defined by
user. For a sample n and a sample sets H ¼ fh1; . . . ; hmg, we use the
following notation:

Kðn;HÞ ¼ Kn;H ¼ K n; h1ð Þ � � � K n; hmð Þ½ � ð1Þ

Suppose the unknown actual model of some relationship is
described as follows:

f̂ ¼ /ðnÞ þ m; ð2Þ

where f̂ 2 R is the observation of output of /, n 2 Rn is the
n-dimensional input, / : Rn#R is a real-valued continuous function
and m is the observation noise. Suppose m samples N ¼ fnk; fkgm

k¼1

are obtained, the SVR model is in the following form:

~f ¼ qþ
Xm

k¼1

akKðnk; nÞ ¼ qþ Kn;Na; ð3Þ

where ak are coefficients, a ¼ ½a1; . . . ;am �> and q is the bias. The
parameters ak and q will be determined in the training procedure.
If a m-dimensional vector output f is required, a direct way is to
use m scalar-valued SVR and to combine the results together. SVR
with 2-dimensional output is involved in this paper. The SVR
method makes a tradeoff between the model complexity (roughly
speaking the smoothness of function (3)) and the estimation error,
this feature ensures the boundedness of the generalization ability of
SVR.

Nowadays there are many well-developed SVR training algo-
rithms, so a user needs not care the details of training. The model-
ing procedure of SVR includes the following steps:

1. Establish the modeling problem, i.e. determine the input-
output relationship to be modeled.

2. Measure training samples.
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