
Safety analysis of mechatronic product lines

Seppo Sierla a, Bryan M. O’Halloran b, Heikki Nikula a, Nikolaos Papakonstantinou a,⇑, Irem Y. Tumer b

a Department of Automation & Systems Technology, Aalto University, FI-00076 AALTO, Espoo, Finland
b School of Mechanical, Industrial, & Manufacturing Engineering, Oregon State University, 204 Rogers Hall, Corvallis, OR 97331, USA

a r t i c l e i n f o

Article history:
Received 13 December 2012
Accepted 3 February 2014
Available online 3 March 2014

Keywords:
Functional Failure Identification and
Propagation
Safety
Risk analysis
Product line
Product platform

a b s t r a c t

Most methodologies for the design and analysis of mechatronic systems target a single product. From a
business perspective, successful product development requires shortening development times, reducing
engineering costs and offering a greater variety of product options for customers. In software engineering,
the software product line (SPL) technology has been developed to meet these conflicting goals, and sev-
eral major companies have reported success stories resulting from SPL adoption. In mechanical engineer-
ing, similar methodologies have been developed under the name of product platforms. Methodologies for
analyzing product qualities such as safety or reliability have been introduced for both SPL and product
platforms. The problem with these methodologies is that they consider either software or mechanical
product design, so they do not guide developers to find the best balance between the controller and
the equipment to be controlled. Several system properties of a mechatronic product line should be inves-
tigated with mechatronic analysis methodologies before the development process branches to software,
electronic and mechanical design. In particular, safety is one system property that can only be analyzed
by considering both the equipment and its controller, so mechatronic methodologies early in the design
are advantageous for discovering safety-related design constraints before costly design commitments are
made. This paper extends the Functional Failure Identification and Propagation (FFIP) framework to the
safety analysis of a mechatronic product line with options in software signal connections and equipment.
The result of applying FFIP is that unsafe combinations of options are removed from the product line.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A fundamental discovery in the field of mechatronics is that
conceptual designs should be analyzed against criteria such as cost,
performance, safety or weight before the design process separates
to unidisciplinary branches such as software, electronic and
mechanical engineering. Numerous modeling and architectural ap-
proaches have been proposed for the purpose of finding the opti-
mal design through interdisciplinary collaboration [1,2] and for
the purpose of shortening the time to market [3]. However, such
approaches are challenged by the product line technology that is
establishing itself in single discipline engineering, especially for
software. Several years ago, the software product line (SPL) tech-
nology became a breakthrough solution to the problem of provid-
ing a broader range of customer options with decreased
development cost and time [4]. In SPL, the architectural focus has
been on explicitly specifying which modules are common to all

products and which modules realize customer options. Technology
for generating executable software products based on a chosen set
of customer options has been in place for several years and has en-
abled successful adopters of SPL to seize market dominance [5].
Organizations developing software-intensive mechatronic prod-
ucts are thus forced to choose between the benefits of either a
mechatronic architecture or a SPL architecture, as the product line
paradigm has not yet established itself in mechatronic research.

If developers of software-intensive safety-critical products de-
cide to adopt a product line approach, available methodologies fo-
cus on safety issues arising from the software itself, such as
ensuring that software features do not interact to bring the system
to an unsafe state [6] or exhaustive verification of product in-
stances for certain required properties [7]. The need for verification
of software requirements against system safety requirements is
recognized and addressed by applying safety analysis methods
such as Software Fault Tree Analysis (SFTA) and software failure
mode, effects and criticality analysis (SFMECA) on the SPL [8],
but this avoids the more fundamental question of how to perform
safety analysis of the product line at the system level in order to
decide what functionality is implemented in software, what are

http://dx.doi.org/10.1016/j.mechatronics.2014.02.003
0957-4158/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +358 465669948.
E-mail addresses: nikolaos.papakonstantinou@aalto.fi (N. Papakonstantinou),

irem.tumer@oregonstate.edu (I.Y. Tumer).

Mechatronics 24 (2014) 231–240

Contents lists available at ScienceDirect

Mechatronics

journal homepage: www.elsevier .com/ locate/mechatronics

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechatronics.2014.02.003&domain=pdf
http://dx.doi.org/10.1016/j.mechatronics.2014.02.003
mailto:nikolaos.papakonstantinou@aalto.fi
mailto:irem.tumer@oregonstate.edu
http://dx.doi.org/10.1016/j.mechatronics.2014.02.003
http://www.sciencedirect.com/science/journal/09574158
http://www.elsevier.com/locate/mechatronics


the potentially hazardous interactions between this software and
the rest of the system, and how this knowledge is used to define
constraints on valid combinations of features in the SPL.

Feature modeling is an established technique in SPL to describe
commonality and variability as a tree structure, usually only for
software, but sometimes also for other system parts such as sen-
sors [9]. It is here posited that the feature model should be defined
for a system consisting of software, electronic and mechanical
parts, and that this model should be subjected to a safety analysis,
so that unsafe feature combinations are eliminated. The resulting
feature model can then be handed to software developers, and
the safety of the software design and implementation, even in
the face of evolution and maintenance pressures, can be addressed
with the existing body of research in SPL. A recent advance toward
a mechatronic direction has been the integration of AADL (Archi-
tecture Analysis & Design Language) to Fault Tree Analysis (FTA)
[10], but this is still limited to the software and execution hard-
ware. Methods such as FTA, SFTA and SFMECA, which have been
applied in the context of safety critical SPL [6,8,10], are limited
by the human user’s ability to identify hazardous fault propagation
paths, and model-based frameworks are needed for the safety
analysis of increasingly complex systems [11].

Major corporations developing products with embedded soft-
ware have recently reported productivity increases of an order of
magnitude as a result of SPL adoption [12], so the widespread
use of mechatronic design and analysis techniques in such organi-
zations requires supporting the product line paradigm. Previously,
the authors have proposed a safety analysis method, Functional
Failure Identification and Propagation (FFIP), for a single mecha-
tronic product [13]. The goal of this paper is to transition FFIP to
a product line approach. This paper builds directly on the authors’
earlier publication [13], so that the input of the analysis is a prod-
uct line expressed as a feature model, and the output is another
feature model from which the unsafe product variants have been
removed. The idea of using feature models to describe design alter-
natives that are filtered by FFIP has been presented in conferences
[14,15]. This paper extends the approach with a semi-automated
workflow and toolchain for processing a product line expressed
as a feature model.

2. Background

2.1. Safety and reliability analysis methods

A vast set of tools and methods exist in reliability engineering
used during the design process. Standard methods such as Fault
Tree Analysis (FTA), Failure Modes and Effects Analysis (FMEA),
Event Tree Analysis (ETA), Reliability Block Diagram (RBD), and
Probabilistic Risk Assessment (PRA), require designers to have a
detailed knowledge of the system and a significant amount of use-
ful data to support each analysis. Without significant advance-
ments, these methods are only applicable to a higher fidelity
level of design [16]. Several relatable methods have been devel-
oped to FMEA to mitigate the risk of failure modes. The Function
Failure Design Method (FFDM) [17–19], originally introduced as
an alternative to FMEA, is a knowledge repository based approach
where historical component failure modes are linked to specific
function-flow pairs. This allows a designer to infer about the rela-
tive occurrence of failure modes for different function-flow pairs.
Since historical failure propagation data is configuration specific,
the FFDM method is limited to single failure impact analysis. The
Risk in Early Design (RED) extends FFDM by presenting a method
of formulating functional-failure likelihood and consequence
based risk assessment classified as high-risk to low-risk function-
failure combinations [20–22]. The Function Failure Rate Design

Method (FFRDM) [19], a separate extension from FFDM, catego-
rizes failure modes using likelihood. This is accomplished by
implementing component failure rate data to normalize the
amount of time a component is used. While these methods capture
failure mode likelihood of occurrence, likelihood of detection, and
severity, they lack the ability to quantify functional impact.

The motivation to understand and evaluate the impact of poten-
tial failures in early design has led to several approaches that cap-
ture the functional effects of a fault. In this paper, a fault is defined
as an abnormal condition or defect of a component that may lead
to a failure. Early work by Wang and Jin has focused on describing
the nature of faults from the conceptual design perspective [23],
leading to other methods that show how those faults may affect
the performance of components in the system [24–26]. These
methods take a qualitative perspective in order to be more applica-
ble in early design. Quantitative methods use descriptions of fault
probability to provide a risk assessment at the early design stage
[17,21,27]. While qualitative methods define the impact of failures,
quantitative methods identify the likelihood of failures and evalu-
ate failures in terms of the product’s or system’s ability to perform
a desired functionality. O’Halloran et al. have developed a frame-
work to calculate a minimum, maximum, and weighted average
system reliability during functional design [28]. The result of this
calculation is then used to reason about how to improve low reli-
ability values by adding redundancies and investigating new func-
tionality. Hata et al. identify failure modes by representing
functions with streams and a network structure [27]. Historical
data and rules are used to determine the impact to the functional
model from a defect. This method cannot handle multiple failures,
dynamic behavior, and requires a large amount of input on poten-
tial failures in the design prior to the evaluation. The method pre-
sented in this paper qualitatively determines the functional effect
by simulating behavior. The extended FFIP method in this paper
has the specific advantage that is uses a dynamic simulation and
thus can capture the impact of faults over a specified time. The dy-
namic simulation normalizes the functional impact for a set length
of time and for a set of design alternatives. The results of a func-
tional impact are specific to a design alternative and are used to
reason about the best design.

In addition to addressing the impact of faults, a variety of fault
propagation methods have been introduced in reliability engineer-
ing. These aim to understand and isolate component failures [29],
mitigate faults and errors in software [29–32], and mitigate faults
in both hardware and software [33,34]. Krus and Grantham present
a failure propagation analysis method developed as a direct exten-
sion of the previously mentioned FFDM and RED method to cap-
ture the failure propagation using a functional model [35]. Wang
and Jin take a different approach to failure propagation by using
a function event network to analyze failure propagation and assign
statistical reliability measure to each functional failure [23]. Huang
and Jin extend this work to the Conceptual Stress and Conceptual
Strength Interference Theory (CSCSIT) by relating conceptual stress
to flow and conceptual strength to function [25]. While the results
are qualitative, this work uses historical data to capture early reli-
ability and does not capture emergent behavior because it is re-
corded for a single component failure. The extended FFIP method
in this paper uses behavior for each component and simulates
the design to show failure propagation paths. Table 1 is used to
summarize the closely related methods in this section.

2.2. The function failure identification and propagation framework

The basic FFIP framework [36] consists of three major elements:
the system representation, simulator, and reasoner. The system
representation consists of a functional model and a configuration
flow graph (CFG). The functional model captures design intent. A

232 S. Sierla et al. / Mechatronics 24 (2014) 231–240



Download English Version:

https://daneshyari.com/en/article/732354

Download Persian Version:

https://daneshyari.com/article/732354

Daneshyari.com

https://daneshyari.com/en/article/732354
https://daneshyari.com/article/732354
https://daneshyari.com

