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a b s t r a c t

The causally dynamic hybrid bond graph is extended to the case of mode-switching behaviour.
Mode-switching ‘trees’ of switches and elements are historically used by bond graph practitioners to rep-
resent elements with piecewise-continuous functions. This case is defined as ‘parametric switching’ for
the purposes of the hybrid bond graph, since the switching is internal to the element, as opposed to
‘structural switching’ which alters the model structure. This mode-switching ‘tree’ is concatenated into
a new controlled element which features Boolean switching parameters in the constitutive equation,
removing unnecessary complexity from the model. Mixed-Boolean state equations can be derived from
the model, which are nonlinear and/or time-varying (and hence not in the familiar Linear Time
Invariant Form). It can be seen that controlled elements often have a static causality assignment and
leave the model structure unchanged. The result is a concise method for representing nonlinear
behaviour as a piecewise-continuous function in the bond graph modelling framework.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This paper1 is a continuation of the method for construction and
analysis of causally dynamic hybrid bond graphs proposed by the
authors [2]. The previous paper suggests the terms ‘structural dis-
continuities’ and ‘parametric discontinuities’ for classifying discon-
tinuous behaviour in engineering systems, and established
controlled junctions for modelling structural discontinuities. In addi-
tion, a dynamic sequential causality assignment procedure (DSCAP)
was described, yielding mixed-Boolean state equations. This paper
completes the method by looking at parametric discontinuities.

The significant body of work on switched and hybrid bond
graphs has already been summarised by the authors [1,2], and ref-
erences numerous proposals such as the use of petri-nets to select
continuous bond graph models [3] and various controlled/switch-
ing elements. The authors argue that existing methods are best sui-
ted to either qualitative analysis or simulation, but rarely both: the
causally dynamic controlled junction offers a method which
reflects the physics of the system, allows graphical inspection
and can generate mixed-Boolean equations for simulation.

Parametric discontinuities are the case where an element
‘switches’ between different constitutive equations. This typically

occurs in as mode-switching systems where an element’s behaviour
changes so rapidly with time (an order of magnitude faster than
the overall time-scale [4]) that it can be considered as an instanta-
neous transition between continuous modes. The system could be
modelled as a purely continuous system and solved using a spe-
cialist stiff solver, but this approach still gives slow simulation
times and is not feasible for real-time applications such as HiL test-
ing. Mode-switching systems include ‘hard nonlinearities,’ where
there are distinct modes of operation (e.g. stiction/friction).
Alternatively, they can occur where some relationship (gained via
empirical data or a high-order function) is best described using a
piecewise continuous function, such as tyre stiffness.

Just as a structural discontinuity is expected to manifest in the
model structure and affect structural properties of the system, a
parametric discontinuity is not. As the behaviour of an element
changes with time, there is no structural change to the physical
system: nothing is connected or disconnected. Therefore, a physi-
cal element with discontinuously changing behaviour should be
represented by a modelling element with internalised switching.

Mode switching is usually modelled as a collection of continu-
ous modes of operation, controlled by an automaton, petri-net or
similar. Within the bond graph framework, mode switching is typ-
ically modelled by a ‘tree’ of ideal switches and standard elements
with continuous constitutive equations. Each element gives the
equation for a specific mode of operation, and the ideal switches
(de)activate it as required. Naturally, only one ideal switch can
be ON at any time during a simulation. Soderman [5] and
Strömberg [6] formulate mode switching ‘trees’ of switched
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sources, and Mosterman and Biswas [4] present a multi-bond con-
trolled junction selecting a continuous bond graph element from a
number of possibilities.

Mode switching has a conceptual advantage in that it aids the
development of finite state automata for simulation. However,
the ‘tree’ notation means a model can rapidly grow to a vast size
with multiple inputs and outputs for all possible modes of opera-
tion. This makes it unsuitable for structural analysis and equation
generation purposes. The multi-bond notation suggested by
Mosterman and Biswas goes some way to controlling this, but is
a little confusing because multibond notation is typically used for
multiple degrees of freedom in a model. Their idea is used as a
basis for the controlled element defined here.

Hence, a mode-switching tree is used to define a controlled ele-
ment with a mixed-Boolean constitutive equation. This simplifies
structural analysis of the bond graph and associated mathematical
model, whilst retaining the rigor of the ‘tree’ notation.

2. The controlled element for parametric discontinuities

This section proposes a new controlled element for the modelling
of parametric switching. They should not be confused with the
existing switched element, which has an on/off behaviour [7].

Consider an element with a piecewise-continuous constitutive
function. A mode-switching tree can be constructed using the con-
trolled junctions with associated Boolean terms (as used for struc-
tural switching), as shown in Fig. 1. Note that a resistance element
is shown, but the principle holds true for inertia and compliance
elements.

In this tree, controlled junctions (de)activate the modes of oper-
ation, which are given by resistance elements on each branch.
These ‘branches’ are then connected by a regular junction which
sums the output values.

� In Fig. 1(a) efforts are summed about a 1-junction: these efforts
are the effort exerted by the resistance when a junction is ON
plus the zero efforts exerted by the X0-junctions when they
are OFF.
� In Fig. 1(b), it is flows which are summed around a zero junc-

tion: these flows are the flow exerted by the resistance when
a junction is ON plus the zero flows exerted by the
X1-junctions when they are OFF.

In a bond graph tree it is important to note that the controlled
junctions are constrained so that only one may be ON at any time.

In order to condense the ‘tree’ into a single controlled element,
consider the underlying equations. Quantities are shown on the
causal bond graph in Fig. 2. The Boolean parameters associated
with the controlled junctions are denoted l. A reference configura-
tion of l1 = 1, l2 = 0, l3 = 0 is arbitrarily assumed. Note that
dynamic causality is internal to the tree: there is static causality
on the resistance elements and the input bond.

The Junction Structure Matrices are (for force input and velocity
input respectively):
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Looking at the summation, we can write:

f ¼ f 1 þ f 2 þ f 3

f ¼ l1R�1
1 e1 þ l2R�1

2 e2 þ l3R�1
3 e3
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And; since flow is constant; And; since effort is constant;

f ¼ l1R�1
1 þ l2R�1

2 þ l3R�1
3

� �
F e ¼ l1R1 þ l2R2 þ l3R3

� �
v

This principle will hold true for ‘trees’ of compliance and inertia ele-
ments. A general definition for the controlled element can therefore
be defined as shown in Table 1.

Proposition 1: A Controlled Element for Parametric
Switching

A mode-switching tree of controlled junctions and elements
can be condensed into a single controlled element. This
controlled element has the general constitutive function:

output ¼
Xi

n¼1

lnUn inputð Þ ð1Þ

Where n is the number of branches to the tree, ln is the
Boolean term associated with nth controlled junction and
Un is the constitutive function of the nth element.

(a) A ‘Tree’ of X0 - Junctions (b) A ‘Tree’ of X1- Junctions
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Fig. 1. Bond graph ‘Trees’ for a piecewise linear resistance element, assuming three
modes of operation.
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Fig. 2. The piecewise linear resistance element subsystem, showing quantities used
in equation generation.
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