FISHVIER

Contents lists available at ScienceDirect

Journal of Experimental Social Psychology

journal homepage: www.elsevier.com/locate/jesp

How time flies: The effects of conversation characteristics and partner attractiveness on duration judgments in a social interaction [☆]

Ping Dong a,*, Robert S. Wyer Jr. b,*

- ^a Rotman School of Management, University of Toronto, Canada
- ^b CUHK Business School, The Chinese University of Hong Kong, Hong Kong

HIGHLIGHTS

- Immediate duration judgments were short when people focused on the dominant speaker.
- Delayed duration judgments were long when people focused on the dominant speaker.
- Different processes mediate people's immediate and delayed duration judgments.
- Duration judgments are both a cause and an effect of partner's attractiveness.

ARTICLE INFO

Article history: Received 4 March 2013 Revised 11 August 2013 Available online 29 August 2013

Keywords: Time estimation Social communication Physical attractiveness Attention focus Impression formation

ABSTRACT

A theory of information processing proposed by Wyer and Srull (1989) is used to conceptualize the characteristics of a get-acquainted conversation that influence perceptions of its duration. These perceptions are partly determined by whether persons focus their attention on things their partner says or on things they personally say, and this, in turn, depends on their partner's physical attractiveness. Participants' estimates of a conversation's duration immediately after it occurs are based on their enjoyment of the conversation and were shorter when the person on whom they had focused talked a lot than when (s)he said very little. After a 2–3 day delay, however, they base their estimates on the amount of the conversation they could remember and estimate that it lasted longer in the former condition than in the latter. These conclusions were confirmed in both simulated conversations and an actual interaction between partners of the opposite sex. Thus, individuals' immediate and delayed estimates of the duration of an interaction can be opposite in direction, and this difference is driven by both the characteristics of the conversation (i.e., speaker dominance) and social and motivational factors that could influence people's focus of attention (i.e., the attractiveness of their conversation partner).

© 2013 Elsevier Inc. All rights reserved.

Introduction

Perceptions of duration are an integral feature of social experience. Some dinner parties seem to drag on for hours on end. Others pass so quickly that it is time to leave before we know it. One reason for this difference seems obvious. In some cases, nothing of interest seems to be going on and we feel bored. At other times, we become engrossed in the stories that are told, debates on the state of the economy and discussions of who will win the World Cup. Time seems to pass more quickly when it is filled with many different events than when it is not.

However, suppose we have occasion to think about the dinner party several days later, after our feelings about it have largely dissipated.

E-mail addresses: ping.dong12@rotman.utoronto.ca (P. Dong), mkwyer@ust.hk (R.S. Wyer).

Then, we may infer its duration from the number of things we remember having occurred, assuming that the more things that took place, the longer it probably took. In this case, therefore, we might infer that the interesting dinner party lasted *longer* than the boring one. Moreover, if events of longer duration are perceived to be less enjoyable (Sackett, Meyvis, Nelson, Converse, & Sackett, 2010), we might even infer that the interesting party was less fun than the one we had initially considered to be boring! In short, the number of events that compose an experience can have opposite effects on estimates of its duration, and judgments of the experience itself, when these estimates are made after a delay than when they are made immediately.

The factors that influence perceptions of time duration in a social context, and the consequences of these perceptions, have never been examined to our knowledge. However, Ahn, Liu, and Soman (2009) partially confirmed the aforementioned intuitions in a nonsocial context. Participants viewed a series of pictures for a period of 3 min. In some conditions, six pictures were presented for 30 s each. In a second condition, 30 slides were presented for 6 s each. When participants were

[↑] The preparation of this manuscript was supported by Grants GRF 640011, GRF 452813 and GRF 493113 from the Research Grants Council of Hong Kong.

^{*} Corresponding authors.

asked immediately after the slide presentation to estimate its duration, they judged it to be longer when a few pictures were presented than when many were presented. After a delay of three days, however, the reverse was true.

Although these findings are provocative, several questions arise in evaluating their implications for social interaction situations. For one thing, participants in most of Ahn et al.'s (2009) studies passively observed a single sequence of independent stimuli with no clear objective in mind except to comprehend what they said. In a social interaction, however, individuals are often exposed to a diverse set of interrelated stimulus events (e.g., statements and behaviors) from several different sources. Moreover, the events that occur can be generated by the individuals themselves as well as by others. Finally, the events to which individuals attend in a social interaction are likely to depend on their processing objectives (to form an impression of others, to make a good impression on others or simply to learn about the topics described). These factors could influence not only individuals' perception of the duration of the interaction but also their enjoyment of it and their attraction to the parties involved. A conceptualization of time perception in social interaction situations must take these factors into account.

We provide such a conceptualization and report evidence bearing on its implications. In two experiments, college students either imagined themselves participating in an audiotaped get-acquainted situation in which the relative amount of time that they and their partner spent talking was varied. The relative attention they paid to the statements they personally made and the statements their partner made was manipulated either by instructions or by varying the partner's physical attractiveness (thus motivating them either to form an impression of their partner or to create a good impression of themselves). In a third experiment, participants actually engaged in a get-acquainted conversation with one another. All three experiments confirmed the assumption that people's immediate and retrospective estimates of a conversation's duration, and their reactions to the conversation, are influenced in opposite ways by their objectives at the time the conversation took place and the aspects of the interaction to which they attended.

Theoretical development

William James (1890) was among the first to observe that "...in general, a time filled with varied and interesting experiences seems short in passing but long as we look back. On the other hand, a tract of time empty of experiences seems long in passing but in retrospect short" (p. 624). Numerous theories of time estimation have been proposed (for a review, see Block, 1990). These estimates can be influenced by emotions and arousal (Droit-Volet & Meck, 2007; Gruber & Block, 2003), mental engagement (Chaston & Kingstone, 2004), motivation (Conti, 2001), and the use of an "internal clock" (Burle & Casini, 2001; Glicksohn, 2001; Treisman, 1984). However, little research and theorizing deal directly with estimates of time duration, and none to our knowledge account for the difference between estimates of time in passing and estimates of time in retrospect.

In fact, most empirical research on time duration estimates has been restricted to a consideration of retrospective judgments (Huttenlocher, Hedges, & Prohaska, 1988). For instance, the conveyor belt model proposed by Murdock and his colleagues supposes that events are encoded in memory in the temporal order in which they occurred (Murdock, 1974; Murdock & Anderson, 1975; see also Huttenlocher, Hedges, & Bradburn, 1990). Similarly, the time tagging model proposed by Yntema and Trask (1963) assumes that individuals assign temporal tags to these events at the time the events are experienced, and these tags provide the basis for reconstructing the period of time that occurred. This tagging seems unlikely to occur spontaneously, however, in the absence of a goal that requires it (but see Burle & Casini, 2001, for a conceptualization that assumes the spontaneous "ticking" of an internal clock). Rather, individuals may have an implicit theory that

the duration of an experience increases with the number of events that occur. Therefore, their estimates of the experience's duration are likely to increase with the number of events they recall at the time of judgment (Orstein, 1969). Thus, as Zauberman, Levav, Diehl, and Bhargave (2010) found, a past experience that is punctuated by a large number of intervening effects seems more distant. Ahn et al.'s (2009) findings noted earlier are also consistent with this possibility. However, Ahn et al. (2009) also found that the effects were reversed when individuals made judgments immediately after the stimuli were presented. The processes that underlie immediate estimates were not clearly stated.

In short, these findings exemplify James's observation that the duration of a past experience seems to increase with the number of things that occurred. As James also observed, however, estimates of an experience's duration at the time it occurs seem to be a function of the amount of "empty space". That is, estimates should be greater when the number of events that occur is small. Time seems to drag when nothing is going on but flies by when we are having fun (Kellaris & Kent, 1992).

To our knowledge, Ahn et al.'s (2009) research is the first to demonstrate empirically the difference between retrospective and immediate time duration estimates. As we have noted, however, the implications of this research for perceptions of time in a social situation of the type that occurs outside the laboratory are unclear. By applying the theory of social information processing proposed by Wyer and Srull (1989), we were able to conceptualize the factors that underlie immediate and retrospective differences in processing when information comes from several different sources (including the participants themselves) and is processed with different goals in mind. Although features of this theory were used by Ahn et al. (2009) to conceptualize retrospective estimates, more general implications of the theory were not articulated. After reviewing features of the theory that bear most directly on these matters, we discuss more specifically its implications for estimates of time duration in a social context.

Basic assumptions

To account for differences in judgments based on the information that people receive at different points in time, Wyer and Srull (1989) postulate two storage units. One, the Work Space, is conceptually similar to working memory, and is a temporary store of both (a) the external information that enters the processing system and is comprehended at an initial stage of processing and (b) the results of goal-directed processing that occur at later stages. This material is retained in the Work Space for only a short time, however. If the goal to which it is relevant has been attained, the Work Space is cleared to make room for more immediately relevant objectives. When this occurs, any material that has not been transferred to long-term memory is lost.

Permanent Storage (analogous to long-term memory) theoretically consists of a number of content-addressable "storage bins," each pertaining to a particular referent. Information is stored in a referent bin only if it is relevant to a goal that individuals happen to be pursuing. Thus, only a subset of information contained in the Work Space is transmitted to Permanent Storage. If information does not enter into higher-order goal-directed processing, it is lost once the Work Space is cleared.

When individuals are called upon to make a judgment, they first search the Work Space for judgment-relevant information. Therefore, if the search is performed a short time after the information has been received and processed, it is likely to be identified and used. After a delay, however, the Work Space may be cleared. Then, only the information that was transmitted to Permanent Storage is available for use in making judgments.

Numerous studies support implications of these assumptions (for a review, see Wyer & Srull, 1989). Several studies (Carlston, 1980; Srull & Wyer, 1980), for example, support the assumption that although judgments a short time after information is processed are based on both the concepts that have been used to encode the information and

Download English Version:

https://daneshyari.com/en/article/7324838

Download Persian Version:

https://daneshyari.com/article/7324838

<u>Daneshyari.com</u>