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a b s t r a c t

Gerchberg-Saxton Algorithm is a common tool for designing Computer Generated Holograms. There
exist some standard functions for evaluating the quality of the final results. However, the use of ran-
domized initial guess leads to different results, increasing the variability of the evaluation functions
values. This fact is especially detrimental when the computing time is elevated. In this work, a new tool is
presented, able to describe the fidelity of the results with a notably reduced variability after multiple
attempts of the Gerchberg-Saxton Algorithm. This new tool results very helpful for topical fields such as
3D digital holography.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The synthesis of Computer Generated Holograms (CGH) re-
presents an active and topical field of research. Some of the ap-
plications of CGHs are placed within fields like data storage, op-
tical data processing, testing or interferometry [1]. One of the most
potential application of CGHs is the ability of shaping a diffraction
pattern at a certain plane in the space. The decade of the 90's was
specially productive due to the development of Personal Compu-
ters and Liquid Crystal Displays (LCDs) [2]. In the recent years, this
application has become an increasing interest motivated, specially,
by the display industry and 3D imaging systems, leading to an
increment of the number of published works about this topic [3–
10]. These fields, compared to planar optics, require an elevated
number of pixels increasing notably the computation time.

The CGH design methods fall into two main groups: global
optimization methods (i.e., genetic algorithms, simulated anneal-
ing or direct search) [11], and iterative design methods [4]. The
iterative methods are based on the Gerchberg-Saxton Algorithm
(GSA) [12,13]. In the following we will center on GSA, since it is the
most used algorithm. This technique was firstly proposed for
phase retrieval problems and, due to the use of a Fast-Fourier
transform (FFT), it results computationally efficient. The original
algorithm successively transforms between the spatial and spatial-
frequency domains, and imposes the respective constraints. For
displaying purposes, the spatial-frequencies and the spatial do-
mains represent the input and output planes respectively. By

transforming the input and output plane with constraints itera-
tively, the diffraction pattern of the CGH becomes closer to the
output target. The algorithm ends after a certain number n of
iterations. In this work (as in the original GSA) the constraint for
the input plane forces the CGH to be a pure-phase element,
whereas the output constraint is that the intensity pattern mat-
ches the desired target regardless the output phase. Fig. 1 sum-
marizes the flow chart of the standard GSA.

There are many ways to start the GSA and, probably, the most
popular is to begin with a randomized phase map. Although it is
always interesting to allow some degree of freedom at the initial
state, GSA is strongly dependent on the starting guess. For this
reason, the correct procedure should be to perform successive
attempts (m iterations in Fig. 1) of the GSA with random initial
estimates in order to average the quality of the results [14]. In
order to illustrate the performance of GSA, Fig. 2 collects six gray-
scale 8-bits images used as sample test in this work. Running a
Matlab implementation of GSA with n¼100 iterations we can
obtain the reconstruction In for each target IT. In addition, Fig. 2
also shows the numerical differences between each target and its
reconstruction. As can be seen, although reconstructions and tar-
gets are visually very similar, there still exits some kind of differ-
ence. In Section 2 we will see some standard functions used for the
evaluation of the reconstruction error.

The use of several averaging iterations can be very expensive in
terms of computing time, specially in applications such as 3D data
storage or volumetric beam shaping. In this work, a new tool for
the evaluation of GSA is presented, reducing the dependence with
the random initial guess. The study is concerned in this work
with 2D digital holograms, but can be extended to 3D digital
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holography.

2. Common evaluation functions

The performance of the GSA (as well as other CGHs design al-
gorithms) is commonly evaluated using different error functions.
There exit a set of three image quality metrics widely applied in
this field [1]. Probably the most usual function is the Root Mean
Square Error (RMS). This function describes the fidelity of the
output intensity compared to the desired target intensity IT,
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where x and y denote the coordinates at the reconstruction plane,
In is the intensity distribution produced by GSA after n iterations
and IT is the target intensity distribution. Thus, RMS quantifies the
similarity between In and IT. Another useful error function is the
efficiency, which can be defined as the amount of intensity within
a region of interest (ROI) divided by the total amount of intensity.
Commonly, the ROI is defined using IT as a mask [1], resulting,
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It should be noticed that this definition of the efficiency func-
tion differs from the diffraction efficiency function, and it is de-
signed for image formation rather than for beam shaping contexts.
Based on similar concepts, the Signal-to-Noise Ratio (SNR) com-
putes the ratio between light intensity in a Signal window and the
amount of intensity in a Noise window. The Signal window mask
can be defined using IT, whereas the negative image of IT con-
stitutes the Noise window [15]. Thus,
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where INT denotes the negative image of IT. Although this defini-
tion is specially designed for binary images, it also works with
gray-scale images. Note that Eqs. 1 and 2 take values between
0 and 1, whereas Eq. (3) can take any positive value. For the ideal
case In¼ IT, Eq. (1) is minimum and the value of the efficiency and
SNR are maxima. Thus, in a GSA loop, RMS follows a decreasing
function and the efficiency and SNR are increasing functions.

As example, we perform an optimization using the target “ring”
and n¼100 GSA loops. If we repeat this procedure m¼200 times,
we obtain 200 optimized solutions. Using the terms presented in
Fig. 1, we have m¼200 values of RMS for any of the n¼100 GSA
loops. Fig. 3(a) shows the mean RMS averaged over the m¼200
trials at any of the n¼100 iterations, using the target “ring”. Fig. 3
(b) shows a histogram with the resulting 200 optimized solutions.
With these values it is possible to calculate the variance using the
standard deviation, defined as
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being ϵm the resulting error value for each averaging iteration, and
ϵ is the mean error,

Fig. 1. Schematic representation of the GSA with random initial phase.

Fig. 2. Targets (up), examples of reconstructions (middle) and differences between
reconstructions and targets (down) after n¼100 iterations of GSA. The error values
for each optimization, computed with different evaluation functions, are plotted in
Figs. 6 and 7.

Fig. 3. RMS error function, averaged over m¼200 and n¼100 iterations of GSA, using the image “ring” as target; (a) evolution of the mean RMS (solid line). Dotted lines
marks the interval where we can find the 68.3% of the trials; (b) histogram of the final RMS values after m¼200 averaging loops, and values of the Gaussian distribution.
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