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a b s t r a c t

This paper studies the dynamics of soliton propagation through optical metamaterials. The proposed
model will be studied with five forms of nonlinearity. They are Kerr law, power law, parabolic law, dual-
power law and log-law. The integration scheme that will be adopted is the method of undetermined
coefficients. Bright, dark and singular soliton solutions will be obtained. The essential conditions for the
existence of these solitons will naturally emerge.

& 2015 Published by Elsevier Ltd.

1. Introduction

The theory of solitons in optical fibers and optical metamater-
ials is a very fascinating area of research in nonlinear optics [1–25].
Optical metamaterials possess both negative permittivity and ne-
gative permeability that cannot be found in nature; but can be
engineered by using advanced processing technology [17]. This
material has been fabricated using nano-fabrication technology by
several research groups [11,17]. They manipulated the periodic
structure of photonic crystal as well as resonant ring for negative
permeability [11,17]. Recently, by using metamaterials, Shalaev
and others demonstrated optical waveguides in visible and infra-
red regions [17]. One inherent property of optical metamaterials in
optical frequency is its loss. Different waveguide structures were
proposed using optical metamaterials [17]. As long as optical wave
is guided, soliton pulses can evolve owing to delicate balance be-
tween dispersion and nonlinearity. However it is always a chal-
lenge to compensate for the loss when engineering these types of
waveguides using metamaterials. The theoretical results showed
that metamaterials enhance nonlinearity by confining electrical
field in a small region that allows more light–matter interaction
[11,17,19,20]. In metamaterials, linear and nonlinear coefficients of

the propagation equation can be tuned to achieve any combination
of signs that is not possible in regular materials. These properties
of metamaterials lead to improved propagation of a wider variety
of solitary waves, efficient phase-matching and modulational in-
stability [12,19,20]. Numerical as well as analytical results of soli-
ton propagation in several nanoscale optical waveguides were
reported by several authors [12,19,20]. Earlier results reveal that
similar regular (positive indexed) dielectric material dispersion
plays a pivotal role in supporting short duration soliton pulses.
Optical waveguides with selected wavelengths can be im-
plemented in photonic crystal partially filled with gold and nano-
particles. Recently, theoretical results are reportedfor Y-splitter
and bend waveguide structures [11].

The dynamics of soliton propagation through these optical
metamaterials is governed by the nonlinear Schrödinger's
equation (NLSE) with a few perturbation terms. This model was
first reported during 2011 [21]. With the advent of such a model, a
plethora of results have been reported. The integrability aspect of
this model was studied with various forms of nonlinearity. The
integration tools that were applied are simplest equation ap-
proach, functional variable method, first integral scheme, Ku-
dryashov's method, trial solutions approach, F-expansion scheme
and others [5–9,13]. These algorithms yielded solitons, shock
waves and other solutions to the model that appeared with several
integrability conditions. In addition to these exact soliton solu-
tions, very recently semi-inverse variational principle was applied
to extract bright and exotic soliton solutions to the model [23].
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These are analytical soliton solutions although they are not exact.
This paper will apply the method of undetermined coefficients
that is otherwise conveniently known as ansatz scheme, to re-
trieve exact soliton solutions. Bright, dark and singular soliton
solutions will be recovered that will appear with essential in-
tegrability conditions which stems out from the solution structure
of the model.

2. Governing equation and mathematical analysis

The dynamics of solitons in optical metamaterials is governed
by the nonlinear Schrödinger's equation (NLSE) which in the di-
mensionless form is given by [20]
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Eq. (1) is the NLSE that is studied in the context of metamaterials.
Here in (1), a and b are the group velocity dispersion and the self-
phase modulation terms respectively. This pair produces the de-
licate balance between dispersion and nonlinearity that accounts
for the formation of the stable solitons. On the right-hand side λ
represents the self-steepening term in order to avoid the forma-
tion of shocks and ν is the nonlinear dispersion, while α represents
the inter-modal dispersion. This arises from the fact that group
velocity of light in multi-mode fibers depends on chromatic dis-
persion as well as the propagation mode involved. Next, θj for
j 1, 2, 3= are the perturbation terms that appear in the context of
metamaterials [1,5–9,13]. Finally, the independent variables are x
and t that represent spatial and temporal variables respectively
with the dependent variable q x t,( ) being the complex-valued
wave profile.

The real-valued algebraic functional F must possess smooth-
ness of the complex-valued function F q q C C:2(| | ) ↦ . Treating the
complex plane C as two-dimensional linear space R2, the function
F q q2(| | ) is k times continuously differentiable provided
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In order to start with the analysis of (1), the starting hypothesis is

q x t P x t e, , , 3i( ) = ( ) ( )ϕ

In (2), P x t,( ) represents amplitude portion of the wave while
x t,ϕ ( ) is the phase component that is given by

x t . 4ϕ κ ω θ= − + + ( )

where κ gives the soliton frequency and ω being the soliton wave
number while θ represent the phase constant. After substituting
(3) into (1) and decomposing into real and imaginary parts lead to
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respectively. The imaginary part equation (6) implies the relations

v a2 7α κ= − − ( )

and
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This follows from the fact that the amplitude portion P x t,( ) can be
written in terms of the wave variable g x vt( − ) with v being the
speed of the wave. The two relations (7) and (8) are obtained by
setting the coefficients of linearly independent functions from (6)
to zero. These two expressions serve as the existence condition for
the solitons that is commonly referred to as constraint relation.

The speed of the soliton stays the same for all laws of non-
linearity, namely for all forms of the functional F introduced in (1)
and for all kinds of solitons. The constraint relation (8) however
modifies with power and dual-power laws. It is the real part
equation that will be further analyzed in detail for various non-
linear forms of F in the following sections.

3. Kerr law

This law is also known as the cubic nonlinearity and is con-
sidered to be the simplest known form of nonlinearity. Most op-
tical fibers that are commercially available nowadays obey this
Kerr law of nonlinearity. Therefore, in this first section the atten-
tion will be on optical metamaterials with cubic nonlinearity. In
this case F u bu( ) = for some non-zero constant b [4]. Therefore,
the governing equation given by (1) with Kerr law nonlinearity
reduces to [5]
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For Kerr law nonlinearity the results of bright, dark and singular
soliton have been already reported in the past [5,6]. Therefore, this
section will just list the results from these earlier published results
[5,6]. It is only the singular solitons of second type that will be
derived in detail.

3.1. Bright solitons

For Kerr law nonlinear medium, bright 1-soliton solution in
optical metamaterials is given by [5]

q x t A B x vt e, sech 10i x t( ) = [ ( − )] ( )κ ω θ(− + + )

where A is the amplitude and B is the inverse width of the soliton.
The relation between amplitude and width is given by
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The wave number is
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and the additional constraint condition is
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3.2. Dark solitons

For Kerr law, dark soliton solution is given by [5]

q x t A B x vt e, tanh . 14i x t( ) = [ ( − )] ( )κ ω θ(− + + )

In this case, the parameters A and B are referred to as free para-
meters and these are connected as
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and the wave number is
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