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a b s t r a c t

Expressions for both the temporal first- and second-order intensity moments of pulsed Gaussian-beam
waves passing through generalized atmospheric turbulence are derived under the near- and far-field
approximations, respectively. With the help of these expressions, the time-dependent scintillation behavior
of optical pulses during propagation in generalized atmospheric turbulence is examined by numerical
calculations. The effects that the spectral index of the spatial power spectrum of refractive-index fluctuations
has on the temporal dependence of pulse scintillations are analyzed under the condition that the generalized
plane-wave Rytov variance is specified as a constant for various spectral indices. It is shown that both the
near- and far-field scintillations of an optical pulse are less dependent on time as the spectral index becomes
smaller, indicating that there does exist a significant difference between the time-dependent scintillation
behavior of an optical pulse in non-Kolmogorov turbulence and that in the Kolmogorov one. The obtained
results are helpful for understanding the time-dependent scintillations of optical pulses propagating in
generalized atmospheric turbulence and hence are useful for practical applications.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Scintillations of optical waves in atmospheric turbulence have
attracted much attention over many years due to the reason that
many practical applications, e.g., free-space optical communica-
tions, remote sensing and laser radar, involve beam propagation
in the atmosphere. Up to now, most of the studies concer-
ning turbulence-induced optical scintillations have considered the
beams as a continuous optical wave [1–3], which can be viewed as a
stationary optical field [4], at least in a wide sense. For a stationary
optical field, both the second- and fourth-order statistics are time-
independent. However, pulsed beam waves, which essentially belong
to non-stationary optical fields [5], have also beenwidely employed in
optical engineering systems. Theoretically, both the second- and
fourth-order statistics of non-stationary optical fields in atmospheric
turbulence should be time-dependent. As a result, Kelly and Andrews
[6] defined the temporal scintillation index to characterize the
turbulence-induced time-dependent intensity fluctuations of pulsed
beamwaves, and examined the time-dependent scintillation behavior

of optical pulses passing through atmospheric turbulence obeying the
von Kármán spectrum.

Although the Kolmogorov theory for atmospheric turbulence,
which assumes that the structure function obeys a 2/3 power law
within the inertial sub-range [7], has beenwidely considered to be in
good agreement with the experimental data in the past, recently it
has been shown that this theory cannot accurately describe the
turbulence statistics in certain portions of the atmosphere, e.g., the
upper troposphere and stratosphere [8]. Hence, the so-called non-
Kolmogorov theory [2,8] has been developed to model the spatial
power spectrum of refractive-index fluctuations incompatible with
the Kolmogorov theory. It is noted that the aforementioned von
Kármán spectrum, including both the inner- and outer-scale para-
meters of turbulence, is actually derived based on the Kolmogorov
theory. Recently, generalized spatial power spectra with an arbitrary
spectral index have been developed to describe the refractive-index
fluctuations of non-Kolmogorov turbulence [2,8–10]. In fact, the non-
Kolmogorov theory can be viewed as a generalization of the
Kolmogorov one. Therefore, non-Kolmogorov turbulence is also
referred to as generalized atmospheric turbulence [9].

The spectral index of the spatial power spectrum of refractive-
index fluctuations has an important impact on the scintillations of
continuous Gaussian-beam waves and on the temporal broadening of
pulsed Gaussian-beam waves in generalized atmospheric turbulence
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[2,11]. Consequently, we conjecture that the spectral index also
significantly affects the time-dependent scintillation behavior of
pulsed Gaussian-beam waves traveling in generalized atmospheric
turbulence. However, to the best of our knowledge, there have been
no reports on this issue. To understand the dependence of pulse
scintillations on the spectral index of the spatial power spectrum of
refractive-index fluctuations, in this paper, we first develop mathe-
matical models for the time-dependent scintillations of an optical
pulse propagating in generalized atmospheric turbulence and then
examine the effects of the spectral index on the time-dependent
scintillation behavior of the pulse by numerical calculations.

2. Theoretical formulations

We consider that a pulsed Gaussian-beam wave propagates
along the positive z-axis in weak generalized atmospheric turbu-
lence from the source plane z¼0 to an observation plane z¼L, and
the pulse at the source plane is denoted by Pi(t)¼vi(t)exp(� iω0t)
where ω0¼2πc/λ0 represents the carrier angular frequency with c
being the speed of light and λ0 the carrier wavelength; vi(t)¼
a0 exp(�t2/T02) denotes the temporal pulse shape with a0 being the
peak amplitude and T0 the temporal half-width. Following Kelly
and Andrews [6], the scintillation index of a pulsed Gaussian-beam
wave in atmospheric turbulence at time t, i.e., the so-called
temporal scintillation index of optical pulses, is defined by

s2
I ðr; L; tÞ ¼

〈I2ðr; L; tÞ〉
〈Iðr; L; tÞ〉2�1; ð1Þ

where r is a position vector in the observation plane; L represents
the propagation distance; 〈Iðr; L; tÞ〉 and 〈I2ðr; L; tÞ〉 are the temporal
first- and second-order intensity moments of the pulsed Gaussian-
beam wave, respectively; the angle brackets denote an ensemble
average. In what follows, we first develop the expressions for the
temporal first-order intensity moment, and then formulate the
temporal second-order one.

2.1. Temporal first-order intensity moment

Following an approach analogous to that of Kelly and Andrews
[6], the first-order intensity moment of a pulsed Gaussian-beam
wave in atmospheric turbulence at time t can be written as
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with Γ2( � ) being the single-point, two-frequency mutual coher-
ence function (MCF) given by

Γ2ðr; L;ω0þω1;ω0þω2Þ ¼ 〈uðr; L;ω0þω1Þunðr; L;ω0þω2Þ〉
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where u(r,L;ω0þωm) is the spectral component of frequency
ω0þωm of the pulsed optical field in the presence of atmospheric
turbulence (m¼1, 2); the asterisk denotes the complex conjugate;
Γ 0ð Þ
2 ( � ) represents the free-space single-point, two frequency MCF;

M2( � ) stands for the factor due to the contribution from atmo-
spheric turbulence. Note that Γ 0ð Þ

2 (r,L;ω0þω1,ω0þω2)¼ou0(r,L;
ω0þω1)u0n(r,L;ω0þω2)4 , where u0(r,L;ω0þωm) is the spectral
component of frequency ω0þωm of the pulsed optical field in free
space (m¼1, 2).

For a collimated pulsed Gaussian beam, under the near-field
approximation, Γ 0ð Þ

2 ( � ) can be expressed in the form [7]
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where W0 is the initial beam radius, r¼ |r|, and ~ω12¼ω1�ω2. On
the other hand, under the far-field approximation, Γ 0ð Þ

2 ( � ) for a
collimated pulsed Gaussian beam can be written as [7]
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where ω12¼(ω1þω2)/2.
If the narrowband approximation is further assumed, under

both the near- and far-field conditions, employing the Rytov
perturbation method, it readily follows from Kelly and Andrews
[6] and Young et al. [12] that
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where Φn( � ) denotes the spatial power spectrum of refractive-
index fluctuations. For generalized atmospheric turbulence, it has
been shown that [10,11,13]

ΦnðκÞ ¼ AðαÞ ~C2
nexpð�κ2=κ2mÞðκ2þκ20Þ�α=2; 3oαo4; ð7Þ

where ~C
2
n is a generalized refractive-index structure constant in

units of m3�α, A(α)¼Γ(α�1)cos(απ/2)/(4π2), with Γ(∙) being the
gamma function κ0¼2π/L0 with L0 being the outer scale of
turbulence, κm¼β/l0 with l0 denoting the inner scale of turbulence
and β¼[2πΓ(5�α/2)A(α)/3]1/(α�5).

Introducing Eq. (7) into Eq. (6) and employing the method for
evaluating integrals based on the Mellin convolution theorem [14–17],
one finds
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U(·) in Eq. (9) denotes a confluent hypergeometric function of the
second kind. In arriving at the second step of Eq. (9), we have assumed
(κ0/κm)2⪡1. If the assumption of l0-0, viz., κm-1, is made, one can
further obtain Q1 ¼ π2Lc�2 ~C

2
nκ

2�α
0 AðαÞΓðα=2�1Þ=Γðα=2Þ, which is

consistent with Eq. (31) in Chapter 18 of Ref. [7] when α¼11/3.
Under the near-field condition, following Young et al. [12],

using Eqs. (4) and (8) to obtain Γ2( � ) and evaluating the double
integral in Eq. (2), one finds
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where T1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
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q
. Based on Eq. (10), one can deduce that the

mean arrival time tm of the pulse under the near-field condition
equals L/c. On the other hand, under the far-field condition
together with the narrowband approximation, following Andrews
and Phillips [7], in a similar manner, yields
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