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a b s t r a c t

Subaperture stitching interferometry combined with a test plate is attractive for testing large convex

aspheres, but the stitching algorithm is challenging because the aberrations induced by misaligned test

surface or test plate are coupled with the surface figure. By relating the subaperture configuration to

the overlapping deviations through ray trace and coordinate transformation, the subaperture mis-

alignment is optimally recognized and corrected to give a minimal overlapping inconsistency in an

iterative way. Allowing for misaligned test plate, we decompose the induced aberrations into three

parts which are corrected by the stitching algorithm, removed in the form of the Zernike polynomials

and left uncorrected as residuals. Finally we present simulation results of testing a convex aspheric

mirror with a computer generated hologram which shows the algorithm successfully retrieves the

surface figure with the test mirror or the hologram misaligned.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Convex aspheric mirrors are widely used in telescopes as the
secondary mirror. With the increasing aperture of the optical
system, the aperture of the secondary is approaching 1 m for
space telescopes [1], and even breaking through 4 m for ground-
based telescopes [2]. Interferometric testing of such large convex
aspheres is challenging due to the large aperture, the large
aspheric departure, and the special difficulties of testing convex
reflecting surfaces.

Smith and Jones [3] summarized and compared nine metrol-
ogy methods for large convex mirrors. The basic three of them are
the Hindle Test, Aspheric Test Plate and Through the Back Test.
Unfortunately the Hindle sphere in Hindle Test is usually several
times larger than the test mirror, which makes it impractical for
meter-class convex mirrors. Although variations such as the
Simpson–Hindle Test [3] and the Perforated Subaperture Hindle
Sphere Test [1] were proposed to deal with this problem, they are
strictly limited to conic aspheres and sometimes still suffer the
problem of optical layout (e.g., the long path).

In Through the Back Test configuration, the convex surface is
treated as a concave one by testing through the back. It is a clever
choice since problems are readily solved for concave surfaces.
However, it also means that the transmitted material with high
transmission quality is required, and lightweight structure on the

mirror substrate is not allowed. This is evidently bad for space
telescopes.

Burge and Anderson [4] proposed the Aspheric Test Plate
method by using either an aspheric surface or a spherical surface
with computer generated hologram (CGH), which is the reference
surface in a Fizeau interferometric test configuration. Although
slightly larger illumination optics and test plate are required,
their tolerances are greatly loosened because the quality of
surfaces before the reference has no direct contribution to the
measurement error due to the common-path nature. The Test
Plate method was adopted for the secondary mirrors of Gemini,
MMT, VLT [1] and Gran Telescopio Canarias (GTC) [5].

The aperture is still limited, typically no larger than 1 m, for
the Aspheric Test Plate method. Combination with subaperture
stitching interferometry seems much more attractive. Since the
full aperture can be divided into several subapertures and
measured one by one, subaperture stitching interferometry effec-
tively extends the lateral range of measurement and also
enhances the lateral resolution. Combining subaperture stitching
interferometry with a test plate was reported as a possible
solution for testing of LSST secondary and TMT secondary [2]. It
should be noted that stitching itself is not competent for large
convex aspheres, because the large aspheric departure results in a
large number of subapertures as in a non-null test configura-
tion [6]. Also note that QED technologies combine the stitching
with a variable optical null (VON), capable of testing middle-scale
aspheres [7]. The subapertures are tested in near-null configura-
tion with most of the aberration compensated by the VON. The
high precision hardware relaxes the requirements on the stitching
algorithm to a great extent.
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The major problem of subaperture stitching is to correct
the different misalignment of subapertures, because different
mechanical motion errors are introduced and unknown when
adjusting the position and orientation of subapertures. It is quite
challenging when using a test plate for aspheres since basically
three components are involved, i.e., the interferometer optics, the
test plate and the test surface. Aberrations may be coupled with
the surface figure in the measurement if any one of them is
misaligned. Furthermore the aberrations induced by misalign-
ment such as radial shift cannot be corrected by traditional
stitching algorithms which correct only the heights and do
nothing to lateral shift of measuring points.

This paper aims to retrieve the full aperture surface figure
from subaperture measurements obtained with the test surface or
the test plate misaligned. More specifically, aberrations induced
by misalignment including radial shift are separated from the
surface figure, though they are identical for all subapertures and
appear as taken from rotationally symmetric surface figure.

2. Misalignment-induced aberrations

Careful alignment is necessary for testing aspheres with a test
plate because misalignment introduces considerable aberrations
which should not be counted in the surface figure. However,
misalignment does exist, especially in subaperture tests since each
subaperture must be positioned and oriented with regard to the test
plate as in a null test configuration. Then problem arises in stitching
such subaperture measurements because the misalignment-induced
aberrations degrade the overlapping consistency significantly, while
general stitching algorithms are based on the least-squares (LS) of
overlapping deviations with proper removal of tip, tilt and power.

We begin with the following example. The test mirror is
hyperbolic and convex. The clear aperture is 180 mm, the conic
constant is �5.481, and the radius of curvature at the vertex is
756.489 mm. Totally six off-axis subapertures are tested with the
mirror rotating around its optical axis by 601 for each. The off-axis
distance is 30 mm. The test plate is a planar surface plus a CGH,
illuminated by a transmission flat. Fig. 1 shows the footprint
diagram of the mirror subaperture. The Zemax model of the
subaperture testing system is also shown in Fig. 2.

The residual aberrations of the test system are nominally less
than 0.0001l (peak-to-valley (PV)). We now suppose that the test
surface figure contains some primary aberrations. The surface sag
is given by

z¼ Zsðx
2þy2Þ

2
þZay2þZcyðx2þy2Þ ð1Þ

where x and y are the normalized lateral coordinates. Zs, Za and
Zc are the coefficients of spherical aberration, astigmatism and
coma, respectively.

Let Zs¼1 mm, and Za¼Zc¼0. The surface figure is shown in
Fig. 3(a) and the measured surface error of nominally aligned
subaperture is half of the optical path difference (OPD), shown
in Fig. 3(b). We use Zygo MetroPro to load and analyze the
data obtained from Zemax in the context. When the mirror is
decentered by 0.1 mm in the X direction, obviously different
surface error is obtained in subaperture measurement as
shown in Fig. 3(c). Note tip, tilt and power are removed in
the error maps. It is evident that the subaperture misalign-
ment introduces overlapping deviations, which cannot be
minimized by simple tip–tilt-power correction as in conven-
tional subaperture stitching algorithms. On the other hand, if
we try to remove more terms from the subapertures, for
example in the Zernike polynomials, by minimizing overlap-
ping inconsistency, then the surface figure is prone to be
removed along with misalignment-induced aberrations.

To overcome this problem, Burge et al. [2] suggested two
additional degrees of freedom (DOFs), i.e., the radial shift and the
clocking of the test plate, for stitching optimization. These two
modes of misalignment are analyzed in advance by ray tracing, to
get the rule of impact of them on wavefront error. The impact is
represented by variation of the Zernike polynomials. Then the
variation is accordingly identified and removed, along with
general tip–tilt-power correction. This method is ad hoc as the
impact rule should be found for different surfaces and subaper-
tures in different test configurations. Moreover, it cannot deal
with the surface figure variation except the induced aberrations
due to lateral shift. It may fail to separate the induced aberrations
from the surface figure when the full aperture surface figure is
rotationally symmetric and the subapertures are identically mis-
aligned, because the overlapping deviations are calculated at
nominal subaperture positions while the subaperture data are
sampled at misaligned positions.

For example, when the mirror is decentered by 0.1 mm and
then rotated to be sampled, all subapertures are identical, as
shown in Fig. 3(c). It is confusing because the misaligned
subapertures look like nominally aligned ones taken from the
full aperture figure of rotational symmetry. But if we put the
misaligned subapertures in nominal configurations, deviations
exist in the overlapping region and will not disappear until they
are put in the real misaligned configurations. In Fig. 4, the two
outmost subapertures are sampled at the decentered positionsFig. 1. Subaperture footprint diagram.

Fig. 2. Zemax model of the subaperture testing system.
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