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a b s t r a c t

Elastic shape analysis is introduced for pose recognition of articulated target which is based on small
samples of ladar range images. Shape deformations caused by poses changes represented as closed
elastic curves given by the square-root velocity function geodesics are used to quantify shape differences
and the Karcher mean is used to build a model library. Three kinds of moments – Hu moment invariants,
affine moment invariants, and Zernike moment invariants based on support vector machines (SVMs) –
are applied to evaluate this approach. The experiment results show that no matter what the azimuth
angles of the testing samples are, this approach is capable of achieving a high recognition rate using only
3 model samples with different carrier to noise ratios (CNR); the performance of this approach is much
better than that of three kinds of moments based on SVM, especially under high noise conditions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Ladar is capable of collecting intensity images and range
images of targets. Because range images are able to represent
high resolution details of three-dimensional (3D) shape informa-
tion of complex targets, there is considerable interest in develop-
ing robust range image automatic target recognition (ATR)
technologies as new ladar sensors become more widely available
[1–3]. In ATR field, rigid targets are divided into two kinds: non-
articulation and articulation. In the past decades, various
approaches have aimed at non-articulated rigid targets, such as
“spin-images” [4], “local surface patches” [5,6], moment invariants
[7–9] and so on [10]. A few researchers discussed about recogniz-
ing articulated targets, such as Jones and Bhanu [11] and Weiss
and Ray [12]. Grinnell et al. used Synthetic Aperture Radar (SAR) to
scattering center locations and magnitudes as features that are
invariant to articulation. Moreover, Weiss et al. applied the multi-
scale region-based invariant transform to represent articulated
targets of range images.

This paper does not discuss the invariance of articulation, but
addresses the issue of pose recognition of articulated targets, e.g.,
tanks or excavators, from single range images. Pose recognition
refers to the modeling and recognition of several poses performed
by an articulated target in the form of a sequence of motions.
These poses are typically used to communicate certain control

commands and request a machine with vision capabilities, espe-
cially in applications such as human–computer interaction and
robotics.

Shape is a very critical feature representation to describe
transformations that are caused by different poses of articulated
targets. Most approaches of shape representation focus on simi-
larity measures of pairwise shapes. Shape representation includes
two kinds of shape descriptors: contours and skeletons (or medial
axis). Compared with a point set, a contour contains the relation-
ship between orders of target boundary; compared with skeletons,
contours, which have a good robustness for large deformation
between similar objects, are insensitive to noise and boundary
perturbation.

In this paper, we applied the elastic shape analysis to manifold
geometry for boundary curves of articulated targets. Over the last
few years, despite the proposed multitudes of metrics, there is an
emerging consensus on the suitability of the elastic metric for
curve shape analysis. This metric uses a combination of bending
and stretching/compression to find optimal deformations from
one shape to another [13]. These deformations are studied as the
shortest paths, or geodesics, under this chosen metric in a certain
shape space. This metric was first suggested by Younes et al. [14]
and subsequently utilized by Mio et al. [15], who developed an
algorithm to compute geodesic paths between arbitrary shapes.
The choices of shape representation and Riemannian metric are
critically important to improve understanding and to compute
efficiently.

Recently, Joshi et al. [13] first introduced representation of
square-root velocity function (SRVF) and Srivastava et al. [16]
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subsequently extended the representation. In 2011, Abdelkader
et al. applied the approach to the recognization of 2D human
gestures from videos [17]. A similar idea was introduced by Younes
et al. [14]. Compared with other presentations, elastic shape
analysis of SRVF has the following advantages: 1) the elastic
matching of curves allows nonlinear registration and improves
the match of features across silhouettes [13]; 2) the method of
representation is invariant to rotation, translation, and scaling, as
well as reparameterization; 3) the reparameterizations of curves in
this metric do not change Riemannian distance between different
curves and thus help removing the parameterization variability
from the analysis. Furthermore, the approach is useful because it
allows us to perform intrinsic statistical analysis tasks, such as
shape modeling and Riemannian spaces.

In this paper, we have applied the representation of SRVF for
pose recognition of 3D articulated targets. However, the approach
of elastic shape analysis cannot keep the out-of-plane rotation
invariance. Moreover, in the real application, it is difficult and
expensive to acquire enough samples for ladar. Thus, in small
samples, we need a representation that is robust to deformations
from translation, scaling, rotation (including in-plane and out-of-
plane rotation) and is capable of distinguishing the difference
among poses caused by articulation angles. Therefore, we analyze
how to build an effective model library. Moreover, using 3 and
7 model samples for each pose, recognition rates of elastic shape
analysis in arbitrary azimuth angles, namely out-of-plane rotation,
are analyzed and compared with three kinds of moment invariants
– Hu moment invariants (HMIs), affine moment invariants (AMIs),
Zernike moment invariants (ZMIs) – with support vector machine
(SVMs).

This paper is organized as follows. Section 2 reviews the
approach of elastic shape analysis. In Section 3, three experiments
are carried out to evaluate and verify the effectiveness of elastic
shape analysis for the pose recognition of articulated vehicles with
simulated range images. The conclusion is presented in Section 4.

2. Review of elastic shape analysis approach

In the entire shape analysis, a shape space is typically
constructed in two steps: 1) a mathematical representation of
curves with appropriate constraints leads to a preshape space and
2) one identifies elements of the preshape space that belongs to
the same orbits of shape-preserving transformations (rotation,
translation, and scaling, as well as re-parameterization) [17]. The
resulting quotient space is the desired shape space. We describe
such representations as below.

2.1. SRVF representation in preshape space and geodesics

Let β be a contour curve of shape, parameterized by an arbitrary
SRVF: q : S1-R2 (S1 is a unit circle in R2 centered at the origin):

qðtÞ ¼ β0ðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‖β0ðtÞ‖

p
ð1Þ

where β0ðtÞ is the velocity vector of β and ‖U‖ is the Euclidean
norm in R2. In fact, this curve can be obtained using the equation
βðtÞ ¼ R t

0 qðsÞ‖qðsÞ‖ds [16].
In order to compare curves quantitatively, suppose that they

are made of an elastic material and adopt a metric that measures
the difficulty in reshaping a curve into another taking elasticity
into account. Infinitesimally, this can be done using a Riemannian
structure on M (n-dimensional manifold). The Riemannian metric
consists of inner products U ; Uh ix in the tangent space TxM,xAM,
which varies smoothly along the manifold [18]. If a : ½0; 1�-M is a
differentiable path in M, then its length is given by L a½ � ¼R 1
0 a0ðtÞ; a0ðtÞ� �1=2dt. The Riemannian distance between two points

q0; q1AM, denoted as dðq0; q1Þ, is defined as the minimum length
over all the paths on the manifold between x and y. A geodesic
path can locally minimize the length between points.

The geodesics are calculated using a path-straightening
approach where the geodesic path between the two points is first
initialized with a path aðtÞ. For any two closed curves, denoted by
q0; q1AM, a geodesic path is a : ½0; 1�-M:

aðtÞ ¼ 1
sin ðθÞð sin ðθð1�tÞÞq0þ sin ðθtÞq1Þ ð2Þ

where θ¼ cos �1ðoq0; q14 Þ denotes the length of the geodesic
[16]. Then, this path is iteratively straightened using a gradient
approach and the limit point of this algorithm is a geodesic path.
To be effective for the shape analysis, the representation and the
geodesics between the points must be invariant to the shape-
preserving transformations [19].

The representation of a parametric curve q is clearly an invariant
of translation since it is based on the velocity field of β. The scale
variance will be obtained by fixing the length to be 1, such thatR 1
0 qðsÞds¼ 1. Moreover, in order to study the shapes of the closed
curves, an additional condition that the curve starts and ends at the
same point is imposed, as

R 1
0 qðsÞ‖qðsÞ‖ds¼ 0. The space that

satisfies these conditions is called preshape space, as C�M [16].

2.2. Removing shape-preserving transformations

The preshape representation of a curve is invariant to transla-
tions and scales. However, the representation is sensitive to
reparameterizations and rotations. The two are studied as groups
acting on C: rotation by the action of SO(2) and reparameterization
by the action of Г, where Г¼{γ:S1-S1} is the space of all
orientation-preserving diffeomorphisms and SO(2) is the special
orthogonal group of 2�2 matrixes. The parameterization γ is a
nonlinear monotonic differentiable function that lends the elastic
properties of curves. The shape space of closed curves S is defined
as the quotient space of the poses of SO(2) and Г; that is S¼C/(SO
(2)� Г). To compute the geodesics between the two shapes, solve
the optimization equation first:

dð½q0�; ½q1�Þ ¼ min
OA SOð2Þ;γAΓ

dðq0;Oðq1 3γÞ
ffiffiffiffi
γ0

p
Þ ð3Þ

To remove the two transformations, we need to solve the joint
minimization problem on (γ,O) in formula (3), with the cost
function H : Γ � SOð2Þ-R, Hðγ;OÞ ¼ dðq0;Oðq1 3γÞ

ffiffiffi
_γ

p Þ. The solution
is obtained by iteratively fixing one variable and optimizing over
the other one. For a fixed γ, the optimization of H(γ, � ) over SO(2) is
obtained using the singular value decomposition (SVD); while the
optimization of H( � ,O) over Г is performed using the dynamic
programming (DP) algorithm, for a fixed OASO(2) [16].

2.3. Computation of mean shape

Let {q1, q2, …, qn}be a collection of closed shapes. This intrinsic
mean q is given by

q¼ 1
n
arg minqA S ∑

n

i ¼ 1
dðq; qiÞ2 ð4Þ

where d denotes the geodesic distance in preshape space after a
DP alignment. To search for a Karcher mean of the collection, a
gradient-type strategy is adopted. Given a tangent vector vATqC,
there exists a locally unique geodesic, av(t), starting at q with t as
its initial velocity and traveling with constant speed. The Rieman-
nian exponential map, expq: TqM-M, maps a tangent vector v to a
point on the manifold that is reached in unit time by the geodesic
av(t). The inverse of expq is known as the logarithm map and is
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