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a b s t r a c t

Camera calibration is a fundamental step in 3D reconstruction and computer vision. Considering the

easy accessibility of two same circles, a method for self-calibration based on two same circles is

proposed. The proposed method does not need any prior knowledge and known camera parameters. By

taking three photos of the object containing two same circles from different views, the close solution

for intrinsic and extrinsic parameters are first obtained by the invariance of circular points and common

tangent of two circles. Then the solution is refined by the nonlinear optimization. This method could get

the intrinsic parameters as well as the extrinsic parameters without complicated matching process.

Extensive results show the accuracy, robustness and wide applications of the proposed method.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Camera calibration is a significant task in computer vision
since the intrinsic parameters and extrinsic parameters of the
camera are indispensable for 3D reconstruction. Some traditional
calibration methods based on circular target are proposed due to
its accuracy and robustness [1–3]. Compared with the traditional
calibration methods, self-calibration is a flexible method. Until
now, many results have been obtained on the self-calibration
based on the circular target. Some researchers introduce the self-
calibration methods based on concentric circles [4–7]. Meng et al.
utilize a special temple which contains a circle and a bundle of
lines crossing the center of the circle to obtain the intrinsic
parameters [8]. Colombo et al. propose a new method based on
coaxial circles [9]. Furthermore, some methods first obtain the
image of infinity line by parallel lines or orthogonal lines and then
get the image of circular points (ICPs) by solving the intersecting
points of the infinity line and the ellipses transformed by the
concentric circles. Finally, the camera parameters could be
obtained by the ICPs [10–12]. Wu et al. propose two calibration
methods based on two parallel circles and two coplanar circles
[13,14]. The intrinsic parameters could be solved, but the solution
for extrinsic parameters was not given. Chen et al. propose a
calibration method from analytic geometry to solve both intrinsic
parameters and extrinsic parameters [15]. But unfortunately, the

equations derived by analytic geometry are too complicated and
some intrinsic parameters are needed to be known beforehand.
Gurdjos et al. analyze the Euclidean structure of parallel circles by
ICPs, which makes a solid foundation for calibration based on
parallel circles and coplanar circles [16]. Then Zheng et al. utilize
ICPs and quadric enveloping lines to calibrate the camera [17].
This method could avoid the complicated equations derived by
analytic geometry in Chen’s method. However, for the projection
of circle center the rotated matrix is needed in addition. Due to
the perspective projection deviations [18], the true projection of
circle center is not the fitting center of the ellipse projected by the
circle. The solution for the true projection of circle center is not
given. Furthermore, this method also needs some known intrinsic
parameters.

The basic idea of all the above methods is the invariabilities of
ICPs and absolute quadric curve. Due to the highly symmetric
trait of the circle, these calibration methods could only obtain the
intrinsic parameters. However, the extrinsic parameters are
indispensable for 3D reconstruction. All the present methods
could get simultaneously the intrinsic parameters and extrinsic
parameters only under the condition that one part of intrinsic
parameters are known or some other geometric objects (such as
lines) are needed.

Due to tangent invariance in perspective projection, the
common tangents of two circles have been used to obtain camera
parameters. In this paper, the property of ICPs and the common
tangents of two same circles are utilized to obtain intrinsic
parameters and extrinsic parameters of the camera. The only
requirement is that there are two same circles in the calibration
template or geometric object. In the calibration the relative
positions of the two same circles do not need to be known
beforehand. Moreover, any prior information about the camera

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/optlastec

Optics & Laser Technology

0030-3992/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

doi:10.1016/j.optlastec.2012.02.013

n Corresponding author. Tel.: þ86 13 801585093; fax: þ86 25 83793000.

E-mail addresses: dafp@seu.edu.cn (F. Da), liquid365@vip.qq.com (Q. Li),

guotao08007217@126.com (H. Zhang), fangxu6@sina.com (X. Fang).
1 Tel.: þ86 15950505939; fax: þ86 25 83793000.
2 Tel.: þ86 15365182747; fax: þ86 25 83793000.
3 Tel.: þ86 15950516283; fax: þ86 25 83793000.

Optics & Laser Technology 44 (2012) 1924–1933

www.elsevier.com/locate/optlastec
www.elsevier.com/locate/optlastec
dx.doi.org/10.1016/j.optlastec.2012.02.013
mailto:dafp@seu.edu.cn
mailto:liquid365@vip.qq.com
mailto:guotao08007217@126.com
mailto:fangxu6@sina.com
dx.doi.org/10.1016/j.optlastec.2012.02.013
dx.doi.org/10.1016/j.optlastec.2012.02.013


is not needed too. Because two same circles are quite easy to get
and it could be extracted easily in practice (such as CD, pop can
and bowl cover), therefore the proposed method could make the
whole calibration process more flexible and simple.

2. Background

2.1. Camera parameters, absolute quadric curve and circular point

In projective transformation, a point in 3D world coordinate
could be denoted as M¼[X,Y,Z]T and the homogeneous coordinate
of this point is ~M ¼ ½X,Y ,Z,t�T . When the point is on the infinite
plane, t is equal to zero. Otherwise, t is equal to one. After
projective projection, the corresponding point in 2D image
coordinate is denoted as m¼[u,v]T and the homogeneous coordi-
nate is ~m ¼ ½u,v,1�T . The relationship between the point in 3D
world coordinate and its corresponding point in 2D image
coordinate is

l ~m ¼ K½R,T� ~M : ð1Þ

where

K ¼

f x s u0

0 f y v0

0 0 1

2
64
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is the intrinsic parameter matrix, R is the rotation matrix in the
extrinsic parameters, T is the translation vector in the extrinsic
parameters. In matrix K, s denotes the obliquity factor, fx and fy

are the effective focal lengths in x axis and y axis, respectively,
(u0,v0) is the principal point.

Absolute conic consists of points which are on the infinite
plane. The point [X,Y,Z]T on the absolute quadric curve satisfies

X2
þY2
þZ2
¼0, i.e., ~M

T ~M ¼ 0. According to Eq. (1), the image of
absolute quadric curve should satisfy

~mT K�T K�1 ~m ¼ 0: ð2Þ

Circular point is the intersection of line at infinity and the
circle. There is one pair of circular points in a plane: I(1,i,0,0),
J(1,� i,0,0) which satisfies

x2þy2þz2 ¼ 0

t¼ 0
:

(

This illustrates that circular point is on the absolute quadric
curve. If the ICPs mI, mJ are known, the intrinsic matrix K could be
obtained by Eq. (2).

2.2. Isotropic line and Laguerre theorem

Isotropic line is a virtual line which passes the circular point.
Obviously, the intersection of isotropic line and line at infinity is
the circular point. Let two common tangents be l1, l2, the slope of
l1, l1 be l1, l2 and the angle between them be y. Let isotropic line
be m1,m2 and the slope of m1,m2 be � i,þ i, respectively. m is the
temporary variable. Then we have

m¼ CRðl1,l2,m1,m2Þ ¼
sinðl1,m1Þ=sinðl2,m1Þ

sinðl1,m2Þ=sinðl1,m2Þ

¼
ðl1þ iÞðl2�iÞ

ðl2þ iÞðl1�iÞ
¼
ð1þl1l2Þþ iðl2�l1Þ

ð1þl1l2Þ�iðl2�l1Þ
¼

1þ i l2�l1
1þl1l2

1�i l2�l1
1þl1l2

: ð3Þ

According to the straight-line angle formula, we obtain

tany¼
l2�l1

1þl1l2
: ð4Þ

From simple algebraic knowledge, we have

tany¼
1

i

e2iy�1

e2iyþ1
: ð5Þ

Substituting Eqs. (3) and (4) into Eq. (5), we obtain

y¼
1

2i
lnm: ð6Þ

This is the Laguerre Theorem [19]. According to this theorem
and cross-ratio invariance in projective projection, if the ICPs and
the images of two common intersecting lines are known, the
actual angle between the two lines could be obtained.

3. Calibration procedures

The whole calibration procedures are shown in Fig. 1.

3.1. Compute the intrinsic parameters

From projective geometry, circular point is the intersecting
point of line at infinity and the circle and the ICPs are the
intersecting points of the image of line at infinity and image of
the circle. For two coplanar circles, every circle could determine
one pair of ICPs. Since there is only one pair of circular points on a
plane, in the ideal case, ICPs determined by the two circles are the
same and the ICPs are on the image of line at infinity. From the
above analysis, it can be concluded that ICPs are included in the
intersecting points of the images of two circles. Wu et al. have
used this idea to obtain the ICPs [17]. Due to the fact that a
standard circle is changed to an ellipse under the projective
transformation, the ICPs are a pair of conjugate points.

Since two separate coplanar circles are used in this paper, the
line which passes the circular points should not lie among the two
circles. The line is shown as L2 in Fig. 2(a). Therefore, we choose the
method for determining circular points as follows. As shown in
Fig. 2(a), in the world coordinate system, the intersecting points of
two circles are two pairs of conjugate points. Line L1 and line L2 are
determined by every pair of the conjugate points. O1 and O2 are the

Extract the two ellipses and obtain
the ellipse coefficients

Obtain the coordinates of the ICPs

Compute the Intrinsic Parameters

Determine Inner Tangent Commons and
External Tangent Commons

Recover the Angle between the Two Inner
Tangent Commons

Obtain Key Points

Determine the Angle

Solve the Homography Matrix

Solve the External Camera Parameters and
Optimize the Rotated Matrix

Non-linear optimization

Fig. 1. Flow chart of the algorithm.
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