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a b s t r a c t

Propagation of Hypergeometric-Gaussian laser beam in a nonlinear plasma medium is investigated by
considering the Source Dependent Expansion method. A subfamily of Hypergeometric-Gaussian beams
with a non-negative, even and integer radial index, can be expressed as the linear superposition of finite
number of Laguerre–Gaussian functions. Propagation of Hypergeometric-Gaussian beams in a nonlinear
plasma medium depends on the value of radial index. The bright rings’ number of these beams is
changed during the propagation in plasma medium. The effect of beam vortex charge number l and initial
(input) beam intensity on the self-focusing of Hypergeometric-Gaussian beams is explored. Also, by
choosing the suitable initial conditions, Hypergeometric-Gaussian subfamily beams can be converted to
one or more mode components that a typical of mode conversion may be occurred. The self-focusing of
these winding beams can be used to control the focusing force and improve the electron bunch quality in
laser plasma accelerators.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Optical vortices have attracted a great deal of attention related
to research and technological applications, such as particle accel-
eration, high harmonic generation and X-ray lasers [1–3]. A new
family of the paraxial Helmholtz equation solution in free space, is
hypergeometric (HyG) beam [4,5]. It is one of the optical vortices
whose amplitude is proportional to the confluent hypergeometric
function. A few studies have been done on HyG beam propagation.
Recently, the propagation of HyG beams in a hyperbolic-index
medium and a uniaxial crystal have been investigated [6–8]. HyG
light beams can be generated with diffractive optical elements and
computer-synthesized holograms [9,10]. Also, based on the HyG
functions, generation of Hypergeometric Gaussian (HyGG) laser
beams has been proposed [11]. HyGG beams can be generated
with a liquid-crystal spatial light modulator [11]. Similar to the
Laguerre–Gaussian (LG) beams, HyGG light beams have helical
wavefront and their intensity profile consists of ring of light beam
carrying orbital angular momentum [12]. So, they can be twisted
like a corkscrew about the axis of propagation and have zero in-
tensity at their center and hence they are also popularly named as
twisted lights. The HyGG beam can be described by the phase

singularity on axis with strength l that is called optical vortex
charge number, and by the radial index p [12]. The laser beams
propagation through the nonlinear plasma medium has been ex-
tensively investigated, whereas the self-focusing of laser beams
has attracted most attention among many of the nonlinear phe-
nomena [13–18]. Recently, several researches were conducted to
study the propagation properties of Gaussian, Cosh-Gaussian,
Hermit–Gaussian and Laguerre–Gaussian beams in plasma [19–
21]. Nevertheless, the propagation of HyGG laser beam in non-
linear medium has been less studied. For this reason, the propa-
gation of HyGG beams in the nonlinear plasma medium is sur-
veyed. The propagation of laser beams in plasma can be numeri-
cally investigated using the Source Dependent Expansion (SDE)
method [22,23]. In this research, the self-focusing of HyGG beams
in nonlinear plasma medium under the paraxial approximation is
surveyed. Here, the SDE method is applied to obtain equations
which govern the beamwidth evolution of HyGG beam. As regards
LG functions form an orthogonal and complete set, HyGG beam
with a non-negative, even and integer radial number, can be ex-
pressed as a linear superposition of finite number of LG functions.
By employing the SDE method in collisionless plasma, beam width
evolution of this subfamily of beams is studied and equations re-
lated to the beam width evolution for each term of this expansion,
considering ponderomotive force effect, are obtained. When an
intense laser beam acts on collisionless plasma, ponderomotive
force of the focused beam pushes the electrons out of high
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intensity region, reducing local electron density which leads to the
further increase of plasma dielectric function and consequently, an
even stronger self-focusing of laser beam occurs [24]. In this work,
the beam width evolution of all members of expansion, coupled
together, is investigated. In Section 2, all required relations to
survey beams width evolution, based on the SDE method and
employing ponderomotive force nonlinearity, will be considered.
Section 3 is dedicated to numerical investigation of the beams
width evolution. Finally, our conclusion is given in the last section.

2. Theoretical analysis

On the basis of paraxial approximation, which implies that the
characteristic distance of intensity variation is much greater than
wavelength, the amplitude of electric field, polarized along the x-
axis, is denoted by A, satisfies the following equation:
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where ϵ′0 and Φ ( )⁎AA are linear and nonlinear terms of permittivity,
respectively, and k is the laser wavenumber. The star (n) is used to
denote complex conjugate. The right hand side of Eq. (1) arises due
to the nonlinear effects. In the free space or a medium without
considering nonlinear effects, LG functions are the solution of Eq.
(1) in the cylindrical coordinate system. Since, the LG functions
form a complete-orthogonal set, one can expand an arbitrary laser
beam versus superposition of LG basis as follows:
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Here, dq l, is the coefficient of expansion. The LG functions for
the slowly varying amplitude are considered as
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In the above equations, w(z) is the beam width, w0 is the initial
beam width, E0 is the initial electric field amplitude, ψ ( )zp l, is the

Gouy phase, β ( )z is related to the curvature of wave front and ()Lq
l

is the associated Laguerre polynomial. Substituting Eq. (2) in Eq.
(1) and using the SDE method, the normalized beam width
( = ( ) )W w z w/ 0 evolution of each term versus the normalized dis-
tance Z ( = =Z z z z kw/ , /2R R 0

2 is the Rayleigh length), in the absence
of beam energy depletion, is as follows [21,22]:
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where ξ = ( )r w z2 /i i
2 2, i index refers to each LG function, and also, A

and Aq l,i i are amplitude of electric field of an arbitrary laser beam
and LG beam, respectively. In Eq. (5a), on the right hand side, the
first term is vacuum diffraction and the second term is related to
the nonlinear effects. In fact, by propagating a laser beam in a

nonlinear medium, the Φ ( )⁎AA term plays an important role. Ac-
cording to Eq. (2), if LG laser beams have the same phase and in-
tensity variation in medium, the laser beam amplitude A will be
shape invariant. It is obvious from Eq. (5) by neglecting the non-
linear effects, the normalized beam width function is changed as

= +W Z1 2 . In addition, Eqs. (2)–(4) show, for the sake of various
phase of LG beams, the laser beam (superposition of LG functions)
intensity is not shape invariant. Indeed, a superposition of LG
beams with the same phase is remained shape invariant. Namely,
Hermite–Gaussian (HG) beam can be expanded as a superposition
of finite number of LG functions with the same phase [25] (alge-
braic details can be found in [25]); therefore, they are shape in-
variant beams. In another word, while HG beams propagate along
the propagation distance, their intensity pattern does not change
and is just scaled. Instead, the HyGG beams are not shape invariant
even by propagating in the free space, as long as HyGG beam is
propagated, one can see a dramatic change of intensity profile.
Hereinafter, further important properties of this family will be
investigated. If a collisionless plasma is chosen as the nonlinear
medium, in Eq. (5b), Φ ( )⁎AA is given by [24]:

Φ
ω
ω

( ) = ( − ) ( )
η⁎ − ⁎AA e1 6

p AA
2

2

Here η =
ω
e

m K T8 e B e

2

2 0
; where e, me, KB, T0e and ω are electron

charge, electron mass, Boltzmann constant, plasma equilibrium
temperature and laser frequency, respectively. Also, ω is the laser

frequency, ω = ( )
ϵp
e n

m
1/2e

e

2

0
is the plasma frequency, ne is the equili-

brium electron density and ϵ0 is the vacuum permittivity. When
η <<⁎AA 1, one can rewritten the ponderomotive force nonlinearity

as Φ ( ) ≈
ω
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2 . In fact, when both the HyGG and LG beams are

normalized, one can expand HyGG beams versus superposition of
LG functions basis as [11]
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where =R r w/ 0, =Z z z/ R, Γ (·) is the gamma function and ( )F a b x, ;1

is a confluent hypergeometric function. If the non-negative, even
and integer radial index p is chosen, the HyGG beams can be ex-
pressed as the linear superposition of a finite number of LG
functions with the same vortex charge number l. In this case, ex-
pansion of LGq l, functions is confined to ≤ ≤q p0 /2 and Eq. (7c)
can be rewritten as [11]
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As discussed earlier, for instance, HyGG l2, beam can be ex-
pressed as the linear superposition of two LG l0, and LG l1, functions.
According to Eqs. (7b), (7c) and (8) HyGG l2, beam is given by
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It is noteworthy that the Gouy phase shift of LG l0, and LG l1, is
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