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a b s t r a c t

When a temporal soliton propagates in the inhomogeneous nonlinear medium with Scarff II parity-time
(PT)-symmetric potential, we investigate the propagation characteristics of a temporal soliton based on
intensity moments. Under the condition of Scarff II PT-symmetric potential, the propagation character-
istics of a temporal soliton are affected by the dispersion coefficient, nonlinear coefficient and chirp. After
a detailed analysis of the intensity evolution and the second-order intensity moment parameter, we find
that the intensity and pulse width (PW) of a chirped-free temporal soliton are invariant during nonlinear
propagation when the dispersion coefficients are the constant, exponential decreasing function and
periodic modulated function, respectively. The intensity and PW of a chirped temporal soliton vary
periodically when the dispersion coefficient is a periodic modulated function. So the chirp has no effect
on propagation behavior of a temporal soliton. When the dispersion coefficients are the constant or
exponential decreasing function, the intensity of a chirped temporal soliton is gradually increased, while
the PW of a chirped temporal soliton is gradually decreased. Thus the temporal soliton is compressed and
the chirp has a great effect on the propagation behavior of a temporal soliton. The results will be helpful
to manipulation of nonlinear propagation of the laser pulses.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In quantum mechanics, every physical observable is associated
with a real spectrum, thus it must be Hermitian. However, Bender
and co-works have pointed out that the non-Hermitian Hamilto-
nian with PT-symmetric can exhibit entirely real spectrum [1]. PT-
symmetric indicates that the real part of a complex potential must
be an even function and the imaginary part must be an odd
function [1,2]. It was suggested that the refractive index distribu-
tion must be an even function and the gain/loss must be an odd
function in optics [3]. In the past few years, Christodoulides et al.
[4] creatively introduced the PT-symmetric into optics field and
investigated the propagation characteristics of a beam in PT-
symmetric potential. Regensburger et al. [5] firstly reported the
synthetic PT-symmetric potential. Then lots of works focus on the
PT-symmetric potential in theory and experiment. Many intriguing
phenomena have been found, such as double refraction [6], power
oscillation [6,7], unidirectional invisibility [8] and absorption en-
hanced transmission [9].

Optical soliton is a very fundamental and important nonlinear
phenomenon in nature, which promise an important application
for optical communication, optical storage, optical switch and all-
optical information processing. Over the past decades, researchers
have been investigated the variety of optical soliton in theory and
experiment. For example, Mondal and Saha have been studied on
the optical pulse propagating in different nonlinear medium and
found some optical soliton [10–13]. Recently, Bhrawy and co-
works have been done works in optical soliton for different sys-
tem, and many optical soliton have been found [14,15]. Because
the PT-symmetric medium has unique properties, which supports
the PT optical soliton. Therefore, generation of a variety of PT so-
liton and analysis of the propagation stability of PT soliton in the
area of PT-symmetric linear, mixed linear–nonlinear, and non-
linear potential have been investigated extensively [16–36].

Different-order intensity moments can describe the character-
istics of a laser pulse, thus many researchers have been used the
intensity moment method to analyze the propagation character-
istics of a laser beam during linear propagation. The primary ad-
vantage of intensity moment method first proposed by Simon [37]
is easy to obtain the output laser characteristics parameters ac-
cording to the incident laser characteristics parameters. From the
experimental view, only the intensity moments up to fourth-order
make sense because the high-order intensity moments (mþn44)
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are subjected to large error and difficult to measure experimen-
tally. The zero-order intensity moment shows the laser energy
[38]. The gravity center of an optical field is described by the first-
order intensity moment [39]. The second-order intensity moment
is used to describe the beam width (BW), pulse width (PW), far-
field divergence angle, M2-factor, curvature radius and Rayleigh
length [39–42]. Siegman has been proposed that the second-order
intensity moment can characterize the laser beam quality [40].
Skewness is used to indicate the symmetry of a laser beam defined
by the third-order intensity moment [39]. Kurtosis parameter re-
presents the degree of sharpness of a laser beam defined by the
fourth-order intensity moment [39,43–46].

In this paper, we investigate the propagation characteristics of a
temporal soliton based on intensity moments when the temporal
soliton propagates in an inhomogeneous nonlinear medium.
Firstly, the temporal soliton solution is found by analytically sol-
ving the generalized nonlinear Schrödinger equation (GNLSE) with
variable coefficient and Scarff II PT-symmetric potential. Then the
intensity evolution of a temporal soliton is discussed. Finally, the
propagation characteristics of a temporal soliton are analyzed in
detail by calculating different-order intensity moments. This paper
is organized as following. In Section 2, the model describing a laser
pulse propagating in the Scarff II PT-symmetric potential is pre-
sented, and the temporal soliton solution is found. In Section 3, we
study the intensity evolution of a temporal soliton during non-
linear propagation. In Section 4, the propagation parameters of a
temporal soliton, such as gravity center, PW, skewness and kur-
tosis parameter are calculated based on intensity moments. Fur-
ther, the propagation characteristics of a temporal soliton are
analyzed in detail. Conclusions are presented in Section 5.

2. Model and temporal soliton solution

For the paraxial approximation, the (1þ1)D variable coefficient
GNLSE with PT-symmetric potential has the form.
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where q(z, x) is the complex envelope of the electrical field, t is the
reduced time, z is the longitudinal propagation coordinate. The
variable coefficients β(z) and γ(z) are the dispersion coefficient and
nonlinear coefficient, respectively. v(z, t) and w(z, t) are the real
and imaginary parts of the complex PT-symmetric potential,
respectively.

In order to find the soliton solution of Eq. (1), the transforma-
tion is defined as
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Here α(z) is the temporal chirp function, which is related to β(z).
α0 is the initial chirp value andΠ(z) is the accumulated dispersion.
Then Eq. (1) becomes a simpler NLSE by substituting Eqs. (2)–(4)
into Eq. (1).
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The variable coefficients β(z), γ(z), v(z,t) and w(z, t) in Eq. (1)
exist the following constraints.
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The γ(z), v(z, t) and w(z, t) are depended on the β(z) from Eqs.
(6)–(8). The functions v(z, t) and w(z, t) must satisfy the restraint of
even and odd functions. The Scarff II PT-symmetric potential is
written as following [16].

τ τ( ) = ( ) ( )V V sech , 90
2

τ τ τ( ) = ( ) ( ) ( )W W sech tanh . 100

V0 and W0 are the modulation depth of the real and imaginary
parts of the PT-symmetric potential. The corresponding linear
problem associated with potential of Eqs. (9) and (10) exhibits an
entirely real spectrum provided that W0rV0þ1/4 [47]. From the
Eqs. (9) and (10), it is easy found that the V(τ) are W(τ) satisfy the
properties of PT-symmetric: V(τ)¼V(�τ) and W(τ)¼�W(�τ).
The soliton solution to Eq. (1) can be obtained if the Eq. (5) is
solved analytically. We seek the analytic solutions to Eq. (5) and
assume the u(ξ, τ) in the form.

ξ τ τ λξ τ( ) = ( ) [ + ( )] ( )u A i iB, exp , 11

where A(τ) are B(τ) are the real valued functions, λ is the corre-
sponding real propagation constant. Substituting Eq. (11) into Eq.
(5), A(τ) are B(τ) satisfy the following differential equations.
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A bound state nonlinear solution to Eqs. (12) and (13) must
satisfy the localization condition →A 0 as τ → ∞. Thus the A(τ) are
B(τ) are solved.
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The propagation constant λ is solved as 3. The complex Scarff II
PT-symmetric potential with variable coefficient are presented by
substituting the Eqs. (9)–(10) into Eqs. (7)–(8).
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After substituting the Eqs. (11), (14) and (15) back into Eq. (2),
the temporal soliton solution of the variable coefficient GNLSE
with Scarff II PT-symmetric potential is found.
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