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A B S T R A C T

We study the influence of interannual climate variability on the economy of several countries in the Sahel region.
In the agricultural sector, we are able to identify coupled climate-economic modes that are statistically sig-
nificant on interannual time scales. In particular, precipitation is a key climatic factor for agriculture in this semi-
arid region. Locality and diversity characterize the Sahel's climatic and economic system, with the coupled
climate-economic patterns exhibiting substantial differences from country to country. Large-scale atmospheric
patterns — like the El Niño–Southern Oscillation and its quasi-biennial and quasi-quadrennial oscillatory modes
— have quite limited influence on the economies, while more location-specific rainfall patterns play an im-
portant role.

1. Introduction

The study of climate impacts on the economy is a crucial part of
assessing the stakes of ongoing global climate change. Thus, Stern
(2016) called climate scientists for a closer collaboration with econo-
mists to design better models and impact assessment methods. This
endeavor, though, requires one to better understand the interactions
between two complex chaotic systems: the climatic and the economic
one. To cope with this problem, common approaches circumvent the
very difficult task of describing the internal dynamics of either system,
as well as the nonlinear interactions between the two. Typically, they
do so either by formulating damage functions that have little empirical
basis or by applying crude regressions to historical time series.

The present work explores an alternative way based on advanced
spectral decomposition methods. We focus here on the identification of
endogenous dynamics in both the climatic and economic system, and
the detection of coupled climate-economic behavior on interannual
time scales.

To identify patterns of spatio-temporal behavior in complex data-
sets, we rely on multichannel singular spectrum analysis (M-SSA),
which provides an efficient tool to detect and reconstruct oscillatory
modes from short and noisy time series; see Ghil et al. (2002) and
Alessio (2016, chapter 12) for a comprehensive overview of the
methodology and of related spectral methods.

M-SSA is based on classical Karhunen (1946)-Loève (1945) theory
and was introduced into the analysis of nonlinear dynamical systems by

Broomhead and King (1986a,b). The methodology has found since
countless applications in the geosciences (e.g., Vautard and Ghil, 1989;
Ghil and Vautard, 1991) and beyond. More recently, M-SSA has been
applied to study the dynamics of macroeconomic activity in the US
(Groth et al., 2015) and the synchronization of business cycles, first in a
set of three European countries (Sella et al., 2016) and then in more
than 100 countries around the world (Groth and Ghil, 2017).

We combine here the climatic and economic system in a cross-panel
M-SSA analysis to study coupled climate-economic behavior in the
Sahel region. It turns out that, in this setting, M-SSA greatly helps
identifying signals of interannual climate variability in the economic
time series.

The Sahel's climate is very erratic and repeatedly suffered from se-
vere droughts (Nicholson, 2013); it remains unclear whether the series
of droughts has stopped now or not (Masih et al., 2014). Precipitation
variability is a key climatic factor for agriculture in semi-arid regions,
and thus climate change entails increased risk in such regions (Dilley,
1997). This issue, combined with the high demographic and economic
stress on the region, makes it highly vulnerable and hence even more
critical to investigate.

Thus, in addition to confirming the cyclic nature of climate and the
economy, the paper's aim is to determine whether climatic oscillations
manifest themselves in macro-economic time series from the Sahel region. To
achieve this aim, we apply M-SSA to a dataset aggregating economic
and climatic time series from the region. To the best of our knowledge,
such an approach has not been tried yet in the ecological economics
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literature, and the present paper should be read as a proof of concept.
The paper is organized as follows. In Section 2, we give a brief in-

troduction to the M-SSA methodology and present a novel statistical
significance test that is tailored to this paper's specific problems. Details
about the dataset and the framework of the study are given in Section 3,
while general characteristics of the time series are briefly presented in
Section 4. In Section 5, we discuss the spectral properties of the com-
bined, climatic-and-and economic dataset, while coupled climate-eco-
nomic behavior is analyzed in Section 6. The results are discussed in
Section 7, and the paper concludes with a summary in Section 8.

2. Methodology

In Section 2.1, we briefly describe the main steps of the M-SSA
methodology, while in Section 2.2, the methodology for statistical-
significance testing is introduced.

2.1. M-SSA

The main aspects of M-SSA are summarized here, and the reader can
refer to Ghil et al. (2002) and Alessio (2016, chapter 12) for further
details. A helpful illustration of the main mathematical aspects can be
found in Groth and Ghil (2017).

The algorithm involves four main steps: (1) embedding, (2) de-
composition, (3) rotation, and (4) reconstruction; these steps are out-
lined in the following.

2.1.1. Embedding
Consider a multivariate time series {xd(n):n=1…N;d=1…D},

with D channels of length N; the first step of M-SSA is to embed each
channel into an M-dimensional space, where M, the window length, is a
parameter. The trajectory matrix is thus generated by taking successive
M-lagged copies from the original series
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Hence each trajectory matrix Xd is composed of M columns of re-
duced length N′=N−M+1. The augmented trajectory matrix is then
formed by concatenating all D channels,

= …X X X X[ , , , ].D1 2 (2)

2.1.2. Decomposition
M-SSA then proceeds by performing a Singular Value

Decomposition (SVD) of the augmented trajectory matrix,

= ′ηX P EΣ ,1/2 (3)

where (⋅)′ denotes the transpose of the argument and the normalization
factor η equals max{N′,DM}. The decomposition yields a set of κ non-
vanishing singular values {s1,…,sκ}, arranged in descending order along
the main diagonal of matrix Σ, with κ=min{N′,DM} being the rank of
X. The matrix P of left-singular vectors has size N′× κ and provides a
set of κ temporal EOFs (T-EOFs). These T-EOFs of reduced length N′
reflect the corresponding behavior of an oscillation.

The matrix E of right-singular vectors has size DM× κ and provides
a set of space-time empirical orthogonal functions (ST-EOFs), arranged
as κ columns of length DM; it is composed of D consecutive segments Ed

of size M× κ,

′ = ′ ′… ′E E E E[ , ],D1 2 (4)

each of which is associated with a channel Xd in X.
Combining Eqs. (2)–(4), we can easily reformulate Eq. (3) into a

channel-wise notation,

= ′ηX PΣE .d d
1/2 (5)

A helpful discussion and illustration of these mathematical proper-
ties can be found in Groth and Ghil (2017, Sec. III and Fig. 1).

2.1.3. Rotation
To better separate distinct oscillations, we rely here on a modified

varimax rotation of the ST-EOFs, cf. Groth and Ghil (2011) and Portes
and Aguirre (2016).

2.1.4. Reconstruction
The dynamical behavior of X associated with a subset ⊆ … κ{1, , }K

of ST-EOFs can be obtained from Eq. (3) by

= ′ηR PΣKE ;1/2
K (6)

here K is a diagonal matrix of size κ× κ, with the k-th diagonal element
equal to one if ∈k K and zero otherwise. Averaging along the skew
diagonals of RK , i.e., over elements that correspond in Eq. (1) to the
same instant in time, finally yields the reconstructed components (RCs).

2.1.5. Participation Index
The squares sk

2 of the singular values equal the eigenvalue λk and
quantify the variance in X that is captured by the corresponding EOF,
i.e. the k-th column in E. The contribution of channel d to this variance
can be measured by the participation index,
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where the sum ranges over all the elements of the k-th column in Ed.
Since the singular vectors have norm one, we get
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i.e. the sum of all D participation indices for a given EOF k yields the
corresponding variance λk (Groth and Ghil, 2011).

2.1.6. Remark
We have followed here the original trajectory-matrix approach of

Broomhead and King (1986a,b), which relies on an SVD of X in Eq. (3).
Alternatively, one could obtain E from the eigendecomposition of the
covariance matrix η−1X′X= E Λ E′ (Vautard and Ghil, 1989), with the
eigenvalues Λ= Σ2. However, in the case of a rank-deficient covariance
matrix, i.e. DM>N′, it is more efficient to calculate the eigende-
composition from a reduced covariance matrix, η−1X X′= P Λ P′ (Allen
and Robertson, 1996). Irrespective of the chosen algorithm, all ap-
proaches yield the same nonvanishing eigenelements (Groth and Ghil,
2015), and we use the two terms, singular values and eigenvalues, in-
terchangeably here.

2.1.7. Oscillatory Modes
M-SSA provides a decomposition of the dataset into distinct spectral

components. The EOFs, though not purely sinusoidal, tend to have a
dominant frequency that can be determined via their Fourier transform
(Vautard and Ghil, 1989). It is, therefore, common practice to plot the
eigenvalues against their corresponding dominant frequencies to obtain
an estimate of a time series' spectral decomposition; as initially sug-
gested by Allen and Smith (1996), doing so is more informative than the
still widespread practice of providing the “scree diagram” of eigenva-
lues against their rank.

Like the sine-cosine pairs in a Fourier analysis, the EOFs tend to pair
up into oscillatory pairs (Vautard and Ghil, 1989). The two EOFs in
such a pair are in phase quadrature and they capture the symmetric and
antisymmetric parts of the oscillation: hence, they also have nearly
equal dominant frequencies and variance levels.

The varimax rotation introduced by Groth and Ghil (2011) greatly
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