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a b s t r a c t

By using the extended Huygens–Fresnel principle, we investigate the stochastic electromagnetic vortex
beam propagating through oceanic turbulence. General formulas for the elements of the 2�2 cross-
spectral density matrix of a stochastic electromagnetic vortex beam propagating through the oceanic
turbulence are obtained. We study the changes in the spectral density, the spectral degree of coherence
and the spectral degree of polarization of such a vortex beam with the help of the general formulas. It is
shown by numerical calculations that, the beam profile will approach a Gaussian distribution in far field
under the influence of oceanic turbulence. It is also interesting to find that the spectral degree of
polarization of a stochastic electromagnetic vortex beam composed by isotropic sources on propagation
in far zone will return to its value in the source plane.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The unified theory of coherence and polarization of a stochastic
electromagnetic beam on propagation was presented by Wolf in
2003 [1,2]. Since then a lot of work has been done to discuss the
properties of a stochastic electromagnetic laser beam on propaga-
tion both in free space [3,4], through deterministic media (such
as optical fibers [5], chiral media [6], optical systems [7] and
compound photonic crystals [8], etc.), and through random media
(just like atmospheric turbulence [9,10], tissues [11,12], and oceanic
turbulence [13–15]).

Since Nye and Berry firstly introduced the concept of vortex
beam on an optical wave field in 1974 [16], there has been
substantial interests concerning optical vortex because of its
interesting properties [17–19] and wide applications [20–22]. In
recent years, propagation of vortex beams in the turbulent
atmosphere has been investigated [23]. Statistical properties of
stochastic electromagnetic vortex beams propagating in free space
have also been discussed in detail [24]. However, to the best of our
knowledge, the propagation properties of stochastic electro-
magnetic vortex beam propagating in the oceanic turbulence have
not been studied and reported.

In this paper, we derive a general formula for the elements of
cross-spectral density matrix of a stochastic electromagnetic
vortex beam while propagating in the oceanic turbulence with
the help of the unified theory of coherence and polarization of

stochastic electromagnetic beams. The spectral density, the spec-
tral degree of coherence and the spectral degree of polarization of
such a beam are investigated in detail.

2. Theoretical analyses

The electric field of a stochastic electromagnetic vortex beam at
the source plane (i.e. z¼ 0) can be expressed as [24]

Eðr;ω; z¼ 0Þ ¼ Aðr;ω; z¼ 0ÞexpðimϕÞ; ð1Þ
where Aðr;ω; z¼ 0Þ is the statistical ensemble of fluctuating
electric field in the source plane, m is the topological charge of
the vortex, and ω is the angular frequency, and the expðimϕÞ being
the phase factor. For computational convenience and without loss
of generality in the following discussion, we assume that the
source field amplitude of the optical vortex is a Laguerre–Gaussian
mode [24,25]:

Aðr; z¼ 0Þ ¼ E0ðr=sÞmexpð�r2=s2ÞexpðiβÞ; ð2Þ
where E0 and s are the characteristic amplitude and beam size in
the source plane, respectively, and β is an arbitrary phase.

Consider a stochastic electromagnetic vortex beam propagating
close to the z axis from the source plane (i.e.z¼ 0) to the half-space
zZ0 in an oceanic turbulence. The second-order coherence and
polarization properties of a stochastic, statistically stationary
electromagnetic beam at a pair of points r1,r2 may be character-
ized by the 2�2 electric cross-spectral density matrix [1]

W
2
ðr1; r2;ωÞ � ½Wijðr1; r2;ωÞ� ¼ ½〈En

i ðr1;ωÞEjðr2;ωÞ〉�; ði¼ x; y; j¼ x; yÞ;
ð3Þ
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where the asterisk denotes the complex conjugate and the angular
brackets represent the average over the ensemble of realizations of
the fluctuating electric field. x and y are two mutually orthogonal
directions perpendicular to the beam axis. Eiðr1;ωÞ and Ejðr2;ωÞ
are Cartesian components of frequency component ω of the
complex electric vector at a point specified by the transverse
position vector r.

When a stochastic electromagnetic vortex beam propagates in
the oceanic turbulence, the cross-spectral density of such a beam
in the output plane z40 can be obtained from the knowledge of
the cross-spectral density in the source plane z¼ 0 with the help
of the extended Huygens–Fresnel integral [26], viz.,

Wijðρ1; ρ2; zÞ ¼ ð k
2πz

Þ2∬ dr1∬ dr2Wijðr1; r2;

z¼ 0Þexp½� ik
ðρ1�r1Þ2�ðρ2�r2Þ2

2z
�

�exp½� π2k2z
3

ðr1�r2Þ2�
Z

κ3ΦnðκÞdκ

¼ ð k
2πz

Þ2∬ dr1∬ dr2Wijðr1; r2; z¼ 0Þexp½� ik
ðρ1�r1Þ2�ðρ2�r2Þ2

2z
�

�exp½� 1
ρ02

ðr1�r2Þ2�: ð4Þ

Here, k¼ 2π=λ is the wave number with λ being the wavelength, z
is the propagation distance, ρ1,ρ2 are the position vectors in the
output plane, and ρ0 is the coherence length of a spherical wave
propagating in the turbulent medium which can be expressed as

ρ0 ¼
3

π2k2z
R1
0 κ3ΦnðκÞdκ

 !1=2

ð5Þ

The model we used for the spatial power spectrum of the
refractive index fluctuations of the oceanic water was obtained in
[14,27], as a linearized polynomial of two variables: the tempera-
ture fluctuations and the salinity fluctuations. The model is valid
under the assumption that the turbulence is isotropic and
homogeneous and, hence, we require only specification of the
one-dimensional spectrum, which has the form

ΦnðκÞ ¼ 0:388� 10�8ε�1=3κ�11=3½1þ2:35ðκηÞ2=3�f ðκ;w; χT Þ; ð6Þ

here ε is the rate of dissipation of turbulent kinetic energy per unit
mass of fluid which may vary in range from 10�4 to 10�10m2=s3,
η¼ 10�3m being the Kolmogorov microscale (inner scale), with

f ðκ;w; χT Þ ¼
χT
w2 ðw2e�AT δþe�ASδ�2we�ATSδÞ; ð7Þ

and χT being the rate of dissipation of mean-square tempera-
ture, AT ¼ 1:863� 10�2; As ¼ 1:9� 10�4; ATS ¼ 9:41� 10�3, and
δ¼ 8:284ðκηÞ4=3þ12:978ðκηÞ2, w being the relative strength of
temperature and salinity fluctuations, where in the ocean water
can vary from �5 to 0, 0 value corresponding to the case when
temperature-driven turbulence dominates, �5 value corresponding
to the situation when salinity-driven turbulence prevails.

On substituting from Eqs. (1) and (2) into Eq. (3), assuming that
the statistical distribution of β corresponding to a Gaussian–Schell
correlator, and the off-diagonal elements of the electric cross-
spectral density matrix of the beam in the source plane have zero
value (i.e.Wxyðr1; r2; z¼ 0Þ ¼Wyxðr1; r2; z¼ 0Þ ¼ 0). Considering the
above assumption, the elements of cross-spectral density matrix of
such a beam in the source plane z¼ 0 can be written as [24]

Wiiðr1; r2; z¼ 0Þ ¼ Ii0ðr1=siÞmi ðr2=siÞmiexp � r21þr22
s2i

" #
exp½� imiðϕ1�ϕ2Þ�

�exp � r21þr22�2r1r2 cos ðϕ1�ϕ2Þ
δ2ii

" #
; ð8Þ

where Ii0 ¼ E2i0.
On substituting from Eq. (8) into Eq. (4), we obtain

Wiiðρ1; ρ2; θ1; θ2; zÞ ¼ I2i0
k

2πz

� �2

exp � ik
2z

ðρ21�ρ22Þ
� �

ZZZ
exp � ik

2z
ðr21�r22Þ

� �
� r1

si

� �2 r2
si

� �2

exp � 1
s2i

þ 1
δ2ii

þ 1
ρ20

 !
ðr21þr22Þ

" #

�exp
ikr1ρ1

z
cos ðθ1�ϕ1Þ

� �
exp � ikr2ρ2

z
cos ðθ2�ϕ2Þ

� �

�exp 2r1r2 cos ðϕ1�ϕ2Þ
1
δ2ii

þ 1
ρ20

 !" #

�exp½� imiðϕ1�ϕ2Þ�r1r2dr1dr2dϕ1dϕ2: ð9Þ

Using the following equations [28]

exp
ikρr
z

cos ðθ�ϕÞ
� �

¼ ∑
1

l ¼ �1
ilJl

kρr
z

� �
exp½ilðθ�ϕÞ�; ð10Þ

Z 2π

0
exp � imϕ1þ

2r1r2
δ2

cos ðϕ1�ϕ2Þ
� �

dϕ1 ¼ 2πexpð� imϕ2ÞIm
2r1r2
δ2

� �
;

ð11Þ
Z 2π

0
expðinϕÞdϕ¼

2π ðn¼ 0Þ;
0 ðna0Þ;

(
ð12Þ

After tedious calculation, Eq. (9) can be simplified as

Wiiðρ1; ρ2; θ1; θ2; zÞ ¼ I2i0
k
z

� �2

exp � ik
2z

ðρ21�ρ22Þ
� �

∑
1

l ¼ �1ZZ
exp � ik

2z
ðr21�r22Þ

� �
� r1

si

� �2 r2
si

� �2

exp � 1
s2i

þ 1
δ2ii

þ 1
ρ20

 !
ðr21þr22Þ

" #

�Jl
kρ1r1
z

� �
Jl

kρ2r2
z

� �
Ilþmi

2r1r2
1
δ2ii

þ 1
ρ20

 !" #

�exp½� ilðθ1�θ2Þ�r1r2dr1dr2: ð13Þ

Now let ρ1 ¼ ρ2 ¼ ρ, θ1 ¼ θ2 ¼ θ, the spectral density and the
degree of polarization of the beam at the point ðρ; zÞ in the
propagation field are given by

Sðρ; z;ωÞ ¼ TrW
2

ðρ; ρ; zÞ ¼Wxxðρ; ρ; θ; θ; zÞþWyyðρ; ρ; θ; θ; zÞ; ð14Þ

Pðρ; z;ωÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Det½W

2

ðρ; ρ; zÞ�
Tr½W

2

ðρ; ρ; zÞ�2

vuuut ; ð15Þ

where Det and Tr stand for the determinant and trace of the
matrix, respectively.

By letting ρ1 ¼ �ρ2 ¼ ρ, the spectral degree of coherence of the
electric field at a pair of points ðρ1; zÞ and ðρ2; zÞ is given by the
formula

μðρ1; ρ2; z;ωÞ ¼
TrW

2

ðρ; �ρ; z;ωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrW

2

ðρ; ρ; z;ωÞ
q

U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrW

2

ð�ρ; �ρ; z;ωÞ
q ð16Þ

Based on Eqs. (13)–(16), we can perform some numerical
calculations of a stochastic electromagnetic vortex beam propa-
gating through turbulent ocean which are shown in the next
section.
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