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a b s t r a c t

Evolutions of the frequency chirps, shapes, and spectra of initial hyperbolic-secant pulses towards wave

breaking are numerically investigated in the normal dispersion regimes of optical fibers with quintic

nonlinearity and the developing chirps and the characteristic distances of wave breaking are

analytically processed approximately. The results show that quite different mathematical expressions

from those of initial Gaussian pulses are obtained. Moreover, the wave breaking here will be more

intense for more oscillation peaks will appear in the pulse wings and the breaking process will last

longer distance before rectangle-shaped pulses form at last. However, the quintic nonlinearity plays a

similar role to the case of initial Gaussian pulses in developing chirps and bringing forward or retarding

the wave breaking. The wave breaking distance will also decrease with increase of the quintic

nonlinearity and the soliton order.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

As an important and universal phenomenon, optical wave
breaking, which results from the interaction between group velo-
city dispersion (GVD) and self-phase modulation (SPM) but occurs
in the normal dispersion regime of fibers [1] or silicon-on-insulator
optical waveguides [2], will lead to degradation of pulse quality due
to its appearance of oscillations in the wings of the pulse and in the
sidelobes on the pulse spectrum. Therefore, this phenomenon is
generally thought as a detrimental factor of the maximal and high
quality pulse compression [1], wave-breaking-free operation in
fiber lasers [3], etc., which should be avoided in practice as far as
possible. Of course, the wave breaking characteristics are very
sensitive to the initial shape profile of the pulse. Specially, previous
studies have already revealed that initially parabolic pulses can
obtain self-similar propagation [4]. Obviously, this is very beneficial
to high power fiber lasers. Moreover, recent more detailed research
concluded quite surprisingly and interestedly that the wave break-
ing may even turn out to be beneficial in many applications [5]. For
all these reasons above, the wave breaking has long been an
important topic and has been extensively investigated experimen-
tally [1,3,6–8], numerically [1,4–7,9–13], and approximately analy-
tically [4,10,11,13,14]. However, as far as we know, these studies

are nearly limited to the case of Kerr nonlinearity. Many previous
researches have revealed that for high incident optical intensities or
materials with very high nonlinear coefficients such as semicon-
ductor doped glass fibers, quintic nonlinearity will take effect and
influence considerably the optical soliton propagation [15], mod-
ulation instability [16], and optical wave breaking [17]. In Ref. [17],
the wave breaking of the initially chirp-free Gaussian (ICFG) pulse
has been numerically and approximately analyzed in an optical
fiber with quintic nonlinearity. In this paper, studies on the optical
wave breaking in case of quintic nonlinearity will be extended to
the initially chirp-free hyperbolic-secant (ICFHS) pulse.

2. Theoretical analysis

The slowly varying envelopes c of the optical field should
satisfy the following extended nonlinear Schrödinger equations
with quintic nonlinearity [15]:
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where b2, g1, g2, z, and T are the second-order group velocity
dispersion (GVD) coefficient, cubic nonlinear coefficient, quintic
nonlinear coefficient, propagating distance, and the retarded time,
respectively. The last two terms on the left-handed side of Eq. (1)
stand for self-phase modulation (SPM), which contains contribu-
tions of cubic and quintic nonlinearity.

In optical wave breaking and even other optical propagation
processes, the developed frequency chirps of pulses undoubtedly
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play an important role. Therefore, we intend to analyze the
frequency chirps developed by GVD and SPM effects in advance
to understand the underlying qualitative mechanisms of the
optical wave breaking. To do this, we adopt the similar approach
of Refs. [13] and [17]. By introducing the real amplitude and
phase of cðz,TÞ according to cðz,TÞ ¼ Aðz,TÞexp½ifðz,TÞ� and separ-
ating Eq. (1) into real and imaginary parts, one can obtain the
following equations:
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where the frequency chirp is defined as oc ¼�@f=@T . Eq. (3)
indicates that the pulse shape evolution is closely related to the
chirp variation. According to Eq. (2), the initial evolution of the
phase should be of the following form:
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and the corresponding developed chirp can be obtained as
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For an ICFHS pulse of the form cð0,TÞ ¼ A0sechðT=T0Þ, Eq. (5)
yields
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0. Obviously, if
no quintic nonlinearity exists, i.e., g2 ¼ 0 and then Q2 ¼ 0, Eq. (6)
will accord with the case of cubic nonlinearity [13].

In the normal dispersion region where the wave breaking
occurs, the parameters satisfy b240, g140, and then Q1o0.
However, Q2 may be 40, o0, or ¼0 depending on the sign of g2.
From Eq. (6), one can easily see that the positive (g240) and
negative quintic nonlinearity (g2o0) can, respectively, increase
and decrease the chirp amount. Furthermore, one can still realize
that the chirp given by Eq. (6) is always nonmonotonic, even in
the linear and cubic nonlinearity case. Accordingly, as Ref. [13]
pointed out, a nonmonotonic chirp implies that there exists
overtaking of different parts of the pulse and wave breaking
ultimately occurs. The wave-breaking distance should take the
following form [13]:

zwb ¼�1=ðb2doc=dTÞ ð7Þ

where, the relation doc=dTo0 must hold because the parameter
zwb must take the positive value. According to Eqs. (6) and (7), the
normalized wave-breaking distance Zwb can be deduced as

Z2
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where, Z ¼ z=z0 is the normalized distance, z0 ¼ pLD=2¼ pT2
0=ð2b2Þ

is the soliton period, LD is the dispersion length of the fiber,
t¼ T=T0 is the normalized time coordinate,YðxÞ ¼ ½�5Q2x2þ

ð4Q2�3Q1þ6Þxþ2ðQ1�2Þ�x, and x¼ sech2t. When the right-
handed side of Eq. (8) is positive, the wave-breaking occurs and
the corresponding minimum value of Zwb is the critical normal-
ized distance or characteristic distance where the wave-breaking
first begins. One can deduce that, the relation ½4�3P�2þ30 P40
always holds where Q2a0 and P¼ ðQ1�2Þ=Q2. As described
above, when Y(x) is negative and takes the minimal value, the
wave-breaking first begins. Thus, the corresponding critical

normalized distance Zwbc or the threshold condition can be
deduced as
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where the parameters xj (j¼1, 2) are, respectively, of the follow-
ing forms:
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Adopting the similar analysis here, one can deduce that the
critical normalized distance Zwbc or the threshold condition for is
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when there are no quintic nonlinearities (Q2¼0), which accords
with that of Ref. [13].

Obviously, the approximate analytical expressions above are
mathematically quite different from those of initial Gaussian
pulses [17].

3. Calculations and discussions

To numerically simulate Eq. (1) conveniently, one usually
adopts the following normalized form of Eq. (1):
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where u, x, N, and rr are normalized envelope of the optical field,
normalized distance, soliton order, and quintic nonlinearity
related parameter, respectively, [17] and sgn stands for the symbol
function.

To compare the wave breaking characteristics of ICFHS pulses
with those of ICFG pulses, we set the same parameters of rr and N

to those of ICFG pulses [17] in the following numerical calcula-
tions. One may naturally infer that their wave breaking charac-
teristics will be similar to some extent for their similar initial
shapes. The numerically calculated shape evolutions are shown in
Fig. 1. Just as one expects, the quintic nonlinearity plays a similar
role to the case of ICFG pulses in bringing forward or retarding the
wave breaking. However, the difference is that the wave breaking
here will be more intense for more oscillation peaks will appear in
the pulse wings. Further investigations indicate that the wave
breaking process will last longer distance before rectangle-shaped
pulses form at last. Moreover, wider temporal width of the pulse
can be observed obviously when the other parameters are
the same.

The approximate analytical descriptions for the critical wave
breaking distance can be obtained by taking the minimum value
of Zwb in Eq. (8) and are shown in Fig. 2. Being similar to the case
of ICFG pulses, the wave breaking distance will also decrease with
increase of the quintic nonlinearity and the soliton order. The
difference is that, however, the characteristic distance of wave
breaking here is longer than that of the ICFG pulse. In addition,
the numerical simulations for the wave breaking distance have
also been provided in Fig. 2 to support our analytical results.
Obviously, the two results accords well with each other except for
some minor deviations between them. One can see that the
numerical wave breaking distance is a little shorter than the
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