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Propagation of flat-topped beams
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Abstract

The propagation of flat-topped beams passing through paraxial ABCD optical system is investigated based on the propagation

formulas of Gaussian beam. The focal shift of focused coherent flat-topped beam is also studied in detail. Analytical expressions of the

M2 factor and the far-field intensity distribution for flat-topped beams are derived on the basis of second-order moments.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In many applications, such as optical processing and
inertial confinement fusion, light beam is required that has
flat-topped profiles and can propagate with limited
distortion of its uniformity. A flat-topped beam can be
obtained by refractive [1,2] and reflective anamorphic [3]
optical systems. Several theoretical models have been put
forward to describe light beam with flat-topped profiles.
Flattened Gaussian beams proposed by Gori is a typical
model [4]. The propagation of coherent and partially
coherent flattened Gaussian beams in free space and
through ABCD optical system has been studied analytically
[5–7] by expanding the flattened Gaussian beams as a finite
sum of Laguerre–Gauss modes [4] or Hermite–Gauss
modes [5]. A closed-form propagation expression of
flattened Gaussian beams is also obtained on the basis of
generalized Huygens–Fresnel diffraction integral, in which
the flattened Gaussian beams are regarded as a whole beam
[8]. The analytical properties of flattened Gaussian beam
make it an alternative to the super-Gauss beam, where
numerical techniques are required even when evaluating
the propagation in free space [9].

More recently, another model of flat-topped beam
expressed in terms of a finite series of lowest-order

Gaussian modes with different parameters is also proposed
[10]. The flattened Gaussian beams with an elliptical flat-
topped profile have been studied in detail based on this
model [11]. An extension from fully coherent flat-topped
beams to partially coherent flat-topped beams is straight-
forward [12]. In the present paper, we investigate the
propagation of flat-topped beams through paraxial ABCD

optical system. The focal shift of flat-topped beams is also
studied. Furthermore, analytical expressions of far-field
intensity distribution and M2 factor for flat-topped beams
are obtained.

2. The axial intensity distribution

Let us consider a flat-topped beam whose field distribu-
tion can be expressed as a finite series of Gaussian modes
with different parameters and is characterized by [10]
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where N is the beam order, N
n

� �
represents a binomial

coefficient, w0 is the beam waist size of Gaussian beam and
w2

nð0Þ ¼ w2
0=n. Fig. 1 shows the normalized intensity

distribution of the flat-topped light beams as a function
of r=w0 with different beam order N. As shown by Fig. 1,
the degree of flatness increases with an increase of the beam
order N. The propagation of flat-topped beams through a
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paraxial optical system parameterized by transfer matrix
A
C

B
D

� �
can be solved by the well-known propagation

formulas of Gaussian beams [7,13], A, B, C, D being the
matrix elements of the optical system. Therefore, the
propagation equation of flat-topped beams at a distance z

is given by
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where k is the wave number, wn, Rn and Fn are given by

wnðzÞ ¼ Awnð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F2

p
, (3a)

RnðzÞ ¼ AB
1þ F�2

1þ BC½1þ F�2�
, (3b)

FnðzÞ ¼ arctan F , (3c)

where F ¼ lB=Apw2
nð0Þ.

For the case of a flat-topped beam diffracted by a thin
lens located at the z ¼ 0 plane, the corresponding matrix
can be written as [14]
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and

Dz ¼
z� f

f
, (5)

where z is the propagation distance and f is the focal length
of the lens. Taking into account Eqs. (2) and (4), the on-
axis intensity distribution of flat-topped beam passing
through a lens can be expressed as
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where

NF ¼
kw2

0

f
(7)

coincides with 2p times the Fresnel number [15].
To characterize the behavior of the axial intensity

distribution of flat-topped beams, we give some numerical
results. In Figs. 2 and 3, we plot the axial intensity
distribution of flat-topped beams as a function of Dz with
different NF when the beam order N is fixed at 10 and with
different beam order N when NF is fixed at 4. It is seen
from Figs. 2 and 3 that the point of the absolute maximum
axis intensity is always located at a distance from geometric
focus and closer to the lens. This effect is named as focal
shift [16]. Fig. 2 indicates that the distance between the
point of absolute maximum intensity and the geometric
focus decreases as the NF increases. In the limited cases,
when the NF is big enough, the distance will become zero.
That is to say, the focal shift can occur only if the Fresnel
number is of the order of unity or smaller [16,17]. Fig. 3
shows that the distance between the point of maximum
intensity and geometric focus is maximum when the beam
order N is 1 and decreases as the beam order N increases.
In other words, the fundamental Gaussian beam experi-
ences more ‘‘focal shift’’ than the flat-topped beams.

3. Far-field intensity distribution and M2 factor

An important property of optical beams is the beam
propagation factor M2 factor defined as [18]

M2 ¼ 2ps0s1, (8)

where s0 and s1 are the second-order moments associated
with the intensity distributions at the waist plane and in the
far field. M2 factor specifies the far-field divergence
properties of the light beam for a fixed beam waist width
[13]. The M2 factor defined in the sense of second-order
moments through paraxial first-order ABCD optical
systems remains invariant upon propagation. M2 factor
is always not less than 1 and equals to 1 for the case of
Gaussian beam [12]. According to the second-moment
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Fig. 1. Normalized intensity distribution of the flat-topped light beams

as a function of r=w0 with different beam order N at z ¼ 0 plane based on

Eq. (1).
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