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ABSTRACT

We contribute to recent research on the optimality of macroeconomic forecasts. We start from the assumption
that forecasters may have a flexible rather than a symmetric (quadratic) loss function assumed in standard tests.
This assumption leads to the prediction that variables available to a forecaster when a forecast was formed
should have no predictive value for a binary 0/1-indicator that captures the sign of the forecast error. A test of
forecast optimality, thus, can be interpreted as a classification problem. We use random forests to model this
classification problem. Random forests are a powerful nonparametric modeling instrument originally developed
in the machine-learning literature. Unlike conventional linear-probability or logit/probit-models, random forests
account in a natural way for potential nonlinear links between the signed forecast error and the variables in
a forecaster’s information set. Random forests also can handle a situation in which the number of forecasts is
small relative to the number of predictor variables that a researcher uses to proxy a forecaster’s information set.
Random forests, therefore, are a powerful modeling device that is of interest for every researcher who studies
the properties of macroeconomic forecasts. Upon estimating random forests on forecasts of four German research
institutes, we document that optimality of longer-term inflation forecasts cannot be rejected and that inflation
forecasts are weakly efficient. For shorter-term inflation forecasts, our results are heterogeneous across research
institutes. When we pool the data across the research institutes, we reject optimality of both shorter-term and

longer-term forecasts.

1. Introduction

Building on important earlier work (Granger, 1969; Varian, 1974;
Zellner, 1986, for recent contributions, see also Christoffersen and
Diebold, 1996, 1997), research on the properties of macroeconomic
forecasts under flexible loss has mushroomed in recent years. In this
area of research, researchers relax the standard assumption of sym-
metric (quadratic) loss and instead assume that forecasters form their
forecasts under a flexible and potentially asymmetric loss function.
Researchers have explored the implications of asymmetric loss in fields
such as central banking (Capistran, 2008; Pierdzioch et al., 2016b,
among others), fiscal forecasting (Artis and Marcellino, 2001; Elliott
et al.,, 2005), growth and inflation forecasting (Christodoulakis and
Mamatzakis, 2008; Pierdzioch et al., 2016a; Sun et al., 2018), and finan-
cial forecasting (Aretz et al., 2011; Fritsche et al., 2015). Much of this
research builds on results on optimal forecasts under asymmetric loss
derived by Elliott et al. (2005, 2008), who develop a GMM-framework
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for estimating and testing forecast optimality when the loss function is
of the lin-lin or quad-quad form.

Patton and Timmermann (2007) further relax the assumption
regarding the form of the loss function and propose a test of forecast
optimality under unknown loss. They show (see their Proposition 3)
that, for a data-generating process that (i) has dynamics only in the
conditional mean and a loss function that depends only on the forecast
error, or, (ii) has dynamics in the conditional mean and variance and
the loss function is homogeneous in the forecast error, forecast optimal-
ity implies that the sequence, 1, <o, is independent of the predictor
variables known to a forecaster at the time when a forecast is formed,
where 1 denotes the indicator function and e,,; denotes the forecast
error. One way to test forecast optimality, thus, is to estimate a linear-
probability or a logit/probit model of the format 1., <o = X6 + uryy A
In this model, § denotes a vector of coefficients, the matrix X, contains
the predictor variables in a forecaster’s period-t information set, and
u,,, denotes the error term. Forecast optimality requires that the null

1 For recent research on the directional accuracy of survey forecasts, see also Hutson et al. (2014) and Pierdzioch et al. (2017), among others.
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hypothesis that the elements of the vector of coefficients, f, are all zero
cannot be rejected.

We use the Patton-Timmermann test to study the optimality of infla-
tion forecasts of four leading German economic research institutes.
To this end, we use random forests (on random forests, see Breiman,
2001). Random forests combine a large number of classification trees to
model the links between the forecast error and the predictor variables
in a forecaster’s information set (on classification trees, see Breiman
et al., 1984). Forecast optimality can then be interpreted as a clas-
sification problem and studied by estimating a model of the format
1., <0 = XrT(X)) 4wy, where T denotes an individual classification
tree.

Classification trees use recursive hierarchical binary splits to sub-
divide the predictors into non-overlapping hypercubes. For every sub-
space, the prediction of 1, | .o is then computed by means of a major-
ity vote. In this way, classification trees capture nonlinear linkages
of unknown form between the forecast error and the predictors (for
the pros and cons of trees, see Hastie et al., 2009, p. 351). A nonlin-
earity arises if the linkage between the forecast error and, for exam-
ple, the short-term interest rate differs in times of a severe finan-
cial crisis such as the one that hit the world economy in 2007/2008
from the corresponding linkage that is characteristic of tranquil eco-
nomic times. Furthermore, the hierarchical structure of classification
trees implies that they capture interaction effects of unknown form
between the predictors of the forecast error. Such interaction effects
arise if, for example, a forecaster relies on quantity-theory consid-
erations to form an inflation forecasts based on the growth rate of
money supply in normal times but uses another model to predict infla-
tion in times when the short-term interest rate reaches the zero-lower
bound.

Research on the properties of macroeconomic forecasts for Germany
has a long tradition (see, e.g., Neumann and Buscher, 1980; Kirchgéss-
ner, 1984; Dopke, 2000). Heilemann and Stekler (2013) analyze the
time-varying accuracy of growth and inflation forecasts, Dopke and
Fritsche (2006b) study the properties of the dispersion of growth and
inflation forecasts, and Kirchgéssner and Miiller (2006) study the impli-
cations of costly forecast revisions. Dopke and Fritsche (2006a) study a
panel of growth and inflation forecasts and cannot reject unbiasedness
and weak efficiency, where weak efficiency requires that the lagged
forecast error has no predictive value for the subsequent forecast error
(Kirchgassner, 1993; Timmermann, 2007, among others). Dopke and
Fritsche (2006a) reject, however, strong efficiency of forecasts as fore-
cast errors are not orthogonal to predictors in a forecaster’s informa-
tion set (see also Kirchgdssner and Savioz, 2001). Using a Bayesian
approach, Behrens et al. (2017) also cannot reject weak efficiency
of growth and inflation forecasts of German economic research insti-
tutes. Their results for the strong efficiency of forecasts are mixed.
Dopke et al. (2010) test for forecast optimality under both a symmetric
and asymmetric loss function. They cannot reject optimality of growth
forecasts of individual research institutes irrespective of the symme-
try/asymmetry of the loss function. The evidence against the optimality
of inflation forecasts is stronger (for forecasts of the German Council of
Economic Experts, see also Kriiger and Hoss, 2012), and so we focus
in this research on inflation forecasts. They also document the sensi-
tivity of their results to the assumed form of the loss function (lin-lin
vs. quad-quad), and the choice of the instruments used to set up the
GMM approach of Elliott et al. (2005, 2008). Hence, it is worthwhile
to reexamine the optimality of inflation forecasts under a flexible (and
unknown) loss function.

We briefly describe random forests in Section 2. Because random
forests are a well-known technique in the machine-learning literature
(see Hastie et al., 2009, chapter 9), our description is relatively com-
pact. We describe our data and summarize our empirical results in
Section 3. We conclude in Section 4.
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2. Random forests

A particularly simple approach to implement the Patton and Tim-
mermann (2007) test of forecast optimality is to consider a linear-
probability model: 1, o =X, + u,,. Optimality of forecasts cannot
be rejected if the hypothesis that the components (including the inter-
cept) of the vector, f, are zero cannot be rejected. A problem with this
approach (and its logit/probit counterpart) is that degrees of freedom
become a limiting factor when a researcher only has available a rela-
tively small number of forecasts and, at the same time, the matrix X,
includes several predictors that may enter into a forecaster’s informa-
tion set. If a researcher encounters such a problem, a natural strategy
to reduce the complexity of the model is to consider only a subset of
X,, or to estimate several models that only contain a single predictor as
explanatory variable. The choice of a subset of X,, however, is rather
arbitrary. Moreover, the single-predictor strategy yields a potentially
large number of estimates, which may be difficult to interpret and rec-
oncile. The number of estimates (as well as the complexity of the model)
even further increases when the sign of the forecast error is linked in
a nonlinear way to the predictors and/or it is important to account for
the interplay of predictors. A researcher may also find it difficult to
pin down a priori the functional form of a nonlinearity (e.g., quadratic,
cubic, or some other form). Similarly, the interplay of predictors may
take on various forms, and it would be better to let the data decide on
the appropriate form of potential interaction effects rather than to fix a
priori any specific form, which then may result in a misspecified model
if the data do not support the specific form of the assumed interaction
effect.

A tree-based approach to testing forecast optimality avoids the prob-
lems of the linear-probability and logit/probit models. Trees have three
building blocks: a root, interior nodes, and terminal nodes (the leaves).
The nodes partition the space of predictors, X; = (xy;, X2, ...), into non-
overlapping hypercubes in a recursive top-down and binary way. In
analogy to a standard least-squares regression, for a regression tree
the partitioning predictor, s, and the partitioning point, z, that form
a node are determined by minimizing the residual sum of squares.
Using a notation similar to the one also used by Hastie et al. (2009,
chapter 9), we choose s and z at the top level of a regression tree
such that the half-planes, R;(s,2) = {x;|x, < 2} and R,(s,2) = {x,|x, >
z} solve, ming, {RSS; + RSS,}, where RSS; = szeRk(s,z)(ei - Ek)z, with
e, = mean{e;|x; € Ri(s,2)}, k = 1,2, and ¢; are the observations of the
forecast error sent to region k (where we have dropped the time index).
This search-and-partition process continues until a preselected maximal
tree size is reached, or every terminal node has a minimum number
of observations. For a classification tree, the search for optimal nodes
is set up in a similar way but the partitioning predictor and the par-
titioning point are chosen to minimize the Gini index, G. Upon let-
ting py, denote the proportion of the binary-coded forecast error in
region k that are from class m = 0,1, we can compute the Gini index
as G = Pypm(1 — prm)- Once the optimal nodes have been identified, the
region-specific prediction of 1, o is then determined by a simple
majority vote: m(k) = arg max,, Piy-

This search-and-partition process gives rise to a hierarchical tree
structure that captures both nonlinearities in the links between the fore-
cast errors and the predictors and any interaction effects between the
predictors. Fig. 1 plots a simple example that illustrates how the search-
and-partition process is used to build a classification tree. At the root
of the tree, the predictor x; is chosen as the partitioning predictor. The
resulting binary split sends data either to the left (if x; < c;) or to the
right (if x; > c;) of the node and gives rise to a simple “step-function”-
like nonlinear link between the sign of the forecast error and the value
of predictor, x;. To the right-hand side of the top-level node, there are
no further splits, and the classification tree predicts that forecast errors
are from class m = 1. To the left-hand side of the top-level node, the tree
has a second node. This second node adds a further layer of complex-
ity to the classification tree, and illustrates the hierarchical structure



Download English Version:

https://daneshyari.com/en/article/7347025

Download Persian Version:

https://daneshyari.com/article/7347025

Daneshyari.com


https://daneshyari.com/en/article/7347025
https://daneshyari.com/article/7347025
https://daneshyari.com

	tooltip zref@0: 
	tooltip zref@1: 


