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A B S T R A C T

Researchers sometime fall into the dummy variable trap. A typical scenario in panel data is when wanting to
estimate the effect of a regressor that is time invariant, such as sex or race, and accidentally including cross-
section specific fixed effects. The problem here is that the fixed effects and the regressor are collinear, which
causes the resulting pooled least squares estimator to break down. In interactive effects models such
breakdowns can occur even if the regressors are not time invariant. The reason is that the interactive effects
are flexible enough to generate a wide range of behaviours that are likely to be shared by the regressors. The
current paper considers the challenging case when some of the regressors are asymptotically collinear with the
interactive effects. The relevant asymptotic theory is developed and tested in small samples using both
simulated and real data.

1. Introduction

Consider the scalar and k × 1 vector of panel data variables yi t, and
xi t, , respectively, observable across t T= 1, …, time periods and
i N= 1, …, cross-section units. The use of such panel data variables
has attracted considerable attention in the empirical economic litera-
ture. A major reason for this is the ability to deal with the presence of
unobserved heterogeneity in yi t, , and the bias that this causes when said
heterogeneity is correlated with the regressors in xi t, . The standard
approach in the literature is to assume that the unobserved hetero-
geneity is made up of additive cross-section and time specific constants,
or fixed effects (FE), whose effect can be eliminated through demean-
ing. Because of the demeaning, the resulting pooled ordinary least
squares (POLS) is unable to estimate the effect of regressors that are
cross-section and/or time invariant. Formally, the FE are collinear with
the invariant regressors, which means that after demeaning said
regressors are zero. The signal matrix is therefore singular, causing
the POLS estimator to break down. This is a well known problem that is
typically referred to as the “dummy variable trap”.

The most common way to circumvent the dummy variable trap is to
simply remove either the problematic regressors or the FE. Which one
to remove depends on the purpose of the study. If the purpose is to
estimate the effect of the invariant regressors, the FE are removed,
whereas if the invariant regressors are not the main focus of the study,
then the opposite is generally preferable. The ability to choose is very

useful and is facilitated by the known additive structure of the FE.
Of course, in most scenarios of empirical relevance, standard FE are

unlikely to be enough, and it is not difficult to find empirical evidence
that confirms this. Observations like this have recently led to the
consideration of interactive effects (IE) models, in which both cross-
section and time specific FE enter in an multiplicative way. The
multiplicative form captures the unobserved heterogeneity more
flexibly than additive FE, since it allows multiple time specific factors
with cross-section specific loadings. This flexibility is the main attrac-
tion of IE models.

A common estimation approach to IE models is to first estimate the
unknown factors, and then to estimate the effect of the regressors by
applying POLS to the defactored variables. Two approaches based on
this idea can be identified, which differ mainly in how the factors are
estimated in the first step. These are the common correlated effects
(CCE) approach of Pesaran (2006), and the principal components (PC)
approach of Bai (2009). Both approaches have attracted considerable
interest, so much that there is by now a separate literature devoted to
them (see Chudik and Pesaran, 2015, for a recent survey). The bulk of
the evidence suggests the CCE approach tends to work best in small
samples, while at the same time being computationally relatively more
convenient. The approach is also very robust, and can be employed
under very general conditions on the IE. In fact, save for some mild
regulatory conditions, the IE are essentially unrestricted. CCE is
therefore very appealing from an applied point of view; hence, our
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interest in it.
The purpose of the present paper is to point to a problem with IE

models that seems to have gone largely unnoticed in the CCE branch of
the literature (see Bai, 2009; Moon and Weidner, 2017for discussions
in the PC case). In particular, while an advantage in many regards, the
generality of the IE also increases the probability of falling into the
dummy variable trap. This is intuitive; as the flexibility of the IE
increases, so does their ability to mimic the behaviour of the regressors.
In analogy to the above discussion of the problem of demeaning in the
FE case, the defactoring exhaust too much variation, causing the signal
matrix to become singular. What is more, unlike with FE, the IE are
estimated unrestrictedly from the data, which means that the possibi-
lity to selectively choose which effects to include is lost. Hence, in IE
models it is generally not possible to estimate the effect of regressors
that are cross-section and/or time invariant.

In Section 2, we present the model that we will be considering,
which can be seen as a collinear regressor extension of the model of
Pesaran (2006). The extension amounts to allowing the idiosyncratic
component of some of the regressors to go to zero at rate κ. In the limit
as κ → 0, the variation of the regressors is driven entirely by the IE,
which makes the signal matrix of the CCE estimator singular. Section 3
reports our asymptotic results, which are based on letting N T, → ∞
and κ → 0. What we find is that provided that the rate of shrinking of κ
is not too fast relative to the rate at which N and T expand, the CCE
estimator is consistent, although generally not asymptotically normal.
In spite of this, however, the CCE-based Wald and t-ratio statistics are
still asymptotically chi-squared and normal, respectively. This last
result is very useful because it means that empirical researchers may
proceed as if the estimator is in fact both consistent and asymptotically
normal. In Sections 4 and 5, we use both simulated and real data to
investigate the accuracy of our asymptotic theory in small samples.
Section 6 concludes.

2. Model and assumptions

The IE model considered in the present paper is very similar to the
one in Pesaran (2006), and is given by

β γ εy X F= + + ,i i i i (1)

ΓX F V= + ,i i i (2)

where y y y= [ , …, ]′i i i T,1 , is T × 1, X x x= [ , …, ]′i i i T,1 , is T × k, βis k × 1,
F f f= [ , …, ]′T1 is a T m× matrix of unobservable common factors with
γi and Γi being the associated m × 1 and m×k matrices of factor
loadings, and ε ε ε= [ , …, ]′i i i T,1 , and V v v= [ , …, ]′i i i T,1 , are T × 1 and
T×k matrices of idiosyncratic errors. The IE are here given by γF i and

ΓF i . The main difference when compared to Pesaran (2006) is how Vi in
(2) is modeled. Let us introduce a full rank k×k matrix G G G= [ , ]1 2 ,
where G1 and G2 are k k× 1 and k k× 2, respectively, with k k k= −2 1.
The matrix Grotates the columns in Vi into k2 columns that are
shrinking to zero and k1 columns that are not shrinking. Specifically,

κVG VG VG E E= [ , ] = [ , ],i i i i i1 2 1, 2, (3)

where E i1, and E i2, are T k× 1 and T k× 2, respectively. Let
E E E e e= [ , ] = [ , …, ]′i i i i i T1, 2, ,1 , , where ei t, is a k × 1 vector of idiosyn-
cratic errors. Assumption ERR below, which is similar to Assumption 2
in Pesaran (2006), puts restrictions on εi t, and ei t, .

Assumption ERR.

(i) εi t, and ei t, are linear stationary processes with absolutely summa-
ble autocovariances, zero mean, finite fourth-order moments,
E ε σ( ) = εi t,

2 2
i

and E e e Σ( ′ ) =i t i t e, , i
for all t,

σ N σ= lim ∑ > 0ε εN i
N2

→∞
−1

=1
2
i

and NΣ Σ= lim ∑N i
N

e e→∞
−1

=1 i
positive

definite.
(ii) εi t, and ej s, are mutually independent for all i, j, t and s.

The scalar κ is key and measures the contribution of the idiosyn-
cratic errors to X Gi 2, as seen by writing

Γ Γ κX G X G X G X X F G E F G E= [ , ] = [ , ] = [ + , + ].i i i i i i i i i1 2 1, 2, 1 1, 2 2, (4)

In order to appreciate the effect of κ, it is useful to decompose G-1 as
G G G= [( )′, ( )′]′−1 1 2 , where G1 and G2 are k k×1 and k k×2 matrices,
respectively. Therefore, letting β β β α α αG G G= [( )′, ( )′]′ = [ ′, ′]′ =−1 1 2

1 2 ,
we have

β β α αX X GG X X= = + ,i i i i
−1

1, 1 2, 2 (5)

such that β α ακM X M E M E= +i i iF F F1, 1 2, 2, which in turn implies that

β ε α α εκM y M X M M E M E M= + = + + ,i i i i i iF F F F F F1, 1 2, 2 (6)

where M I P I A A A A= − = − ( ′ ) ′T TA A
+ for any T-rowed matrix Awith

A A( ′ )+ being the Moore–Penrose inverse of A A′ . Suppose that Fis
known. If κ = 1, then α α α βκE E E V+ = =i i i i1, 1 2, 2 . Hence, provided that

NT NTG V M VG E M E( ) ∑ ′ ′ = ( ) ∑ ′i
N

i i i
N

i iF F
−1

=1
−1

=1 converges to a positive
definite matrix, βcan be estimated from a POLS regression of M yiF
onto M XiF . If, however, κ → 0, then ακM E iF 2, 2 vanishes, which means

that βis no longer estimable. Moreover, NT G V M VG( ) ∑ ′ ′i
N

i iF
−1

=1 is
asymptotically singular. This scenario is very different from the “low-
rank regressor” case considered by Bai (2009), and Moon and Weidner
(2017) in the PC case, in which NT X M X( ) ∑ ′i

N
i F

−1
=1 is assumed to be

positive definite (with probability one).
The problem that arises when κ → 0 is that X i2, becomes collinear

with Fin (1). The last k2 columns of M X GiF are therefore asymptotically
zero, which means that there is no variation left for the estimation of
α2. This causes the POLS estimator to break down. The probability of
break-down depends to a large extent on the assumptions placed on F.
The more general is F, the more likely it is that the projection onto
space spanned by Fwill exhaust the variation in Xi. A standard
assumption in the literature on factor-augmented regression models
is that T F F′−1 converges to a positive definite matrix (see, for example,
Bai, 2009; Greenaway-McGrevy et al., 2012; Moon and Weidner, 2017;
Pesaran, 2006), which rules out many empirically relevant cases, such
as when Fis trending. However, as pointed out by Westerlund (2017),
the CCE estimator is actually valid under much more general condi-
tions. In fact, the only thing we need is that there exists an m×m
diagonal normalization matrix DT such that D fT t

−1 has certain moments.
Assumption F. Consider the m×m matrix T TD = diag( , …, )T

p pm1

with p ≥ 1/2j for all j. The following is assumed:

(i) E D F FD Σlim (∥ ′ − ∥ ) = 0T T T F→∞
−1 −1 2 , where mΣrank( ) =a s

F
. .

and
E Σ(∥ ∥ ) < ∞F

2 , where Arank and A A A∥ ∥ = tr( ′ ) denote the
trace and the Frobenius (Euclidean) norm of the matrix A,
respectively.

(ii) E N D F alim (∥ ′ ∥ ) < ∞N T T, →∞
−1 2 and E D F alim (∥ ′ ∥ ) < ∞T T i→∞

−1 2 for
all i, where εa E∈ { , }i i i .

Because of the asymptotic collinearity, the estimation of βis clearly
a nontrivial issue. The problem becomes even more interesting if we in
addition assume that Fis unknown. The reason is that if Fis unknown,
then there is a problem of how to control the endogeneity caused by the
presence of Fin both (1) and (2). However, by combining the two
equations, we have

Z FC U= + ,i i i (7)

where Z y X z z= [ , ] = [ , …, ]′i i i i i T,1 , is T k× ( + 1), yz x= [ , ′]′i t i t i t, , ,
is k( + 1) × 1, Γβ γ ΓC = [ + , ]i i i i is m k× ( + 1), and

β εU u u V V= [ , …, ]′ = [ + , ]i i i T i i i,1 , is T k× ( + 1). Thus, the model in
(1) and (2) can be rewritten equivalently as a static factor model for
Zi, which is convenient because it means that Fcan be estimated using
existing approaches for such models. In CCE the estimator of Fis
particularly simple, and is given by

F Z= , (8)
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