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A B S T R A C T

Multifractal processes have recently been introduced as a new tool for modeling the stylized facts of financial
markets and have been found to consistently provide certain gains in performance over basic volatility models
for a broad range of assets and for various risk management purposes. Due to computational constraints,
multivariate extensions of the baseline univariate multifractal framework are, however, still very sparse so far.
In this paper, we introduce a parsimoniously designed multivariate multifractal model, and we implement its
estimation via a Generalized Methods of Moments (GMM) algorithm. Monte Carlo studies show that the
performance of this GMM estimator for bivariate and trivariate models is similar to GMM estimation for
univariate multifractal models. An empirical application shows that the multivariate multifractal model
improves upon the volatility forecasts of multivariate GARCH over medium to long forecast horizons.

1. Introduction

Multifractal (MF) processes have been recently introduced as a new
tool for modeling the stylized facts of financial markets. In contrast to
the additive structure of the seminal GARCH family of models, this new
class of volatility models conceives volatility as a hierarchical, multi-
plicative process with heterogeneous components. The essential new
feature of MF models is their ability of generating different degrees of
long-term dependence in various powers of returns - a feature
pervasively found in empirical financial data, cf. Lo (1991), Ding
et al. (1993), Beran (1994), Lobato and Savin (1998), Zumbach
(2004), among others. This feature also sets multifractal models apart
from long memory models of the FIGARCH type that are unifractal by
design. Research on multifractal models originated from statistical
physics (Mandelbrot, 1974). Unfortunately, the models used in physics
are of a combinatorial nature and suffer from non-stationarity due to
their restriction to a bounded interval and the non-convergence of
moments in the continuous-time limit. This major weakness of the
early so-called multifractal model of asset returns (MMAR) proposed
by Mandelbrot et al. (1997) has been overcome by the development of
iterative versions of the multifractal approach in the econometrics
literature, the Markov-switching multifractal model (MSM) proposed
by Calvet and Fisher (2001, 2004) and the multifractal random walk
proposed by Bacry et al. (2000). Various subsequent developments can
be found, for example, in Lux (2008), Calvet et al. (2006) or Lux and

Morales-Arias (2010). Lux and Segnon (2016) provide an up-to-date
review of variants of multifractal models, available estimation techni-
ques and empirical applications.

Although the multifractal model is a rather new tool in volatility
modelling, various approaches have already been explored to estimate
its parameters. The parameters of the combinatorial MMAR have been
estimated via an adaptation of the scaling estimator and Legendre
transformation approach from statistical physics although this ap-
proach has been shown to likely yield unreliable results for fat-tailed
data subject to volatility clustering (the well-known stylized facts of
financial data), cf. Lux (2004). Maximum likelihood (ML) estimation
for Markov-switching multifractal models has been developed by
Calvet and Fisher (2004), and Generalized Method of Moments
(GMM) by Lux (2008).

So far, available multifractal models are mostly univariate ones and
only a few authors have explored bivariate models c.f. Bacry et al.
(2000), Calvet et al. (2006), Idier (2011), Liu (2008) and Liu and Lux
(2014). However, for many important questions in empirical research,
multivariate settings (exceeding bivariate) are preferable, cf. Bollerslev
(1990), Liesenfeld and Richard (2003). For instance, the extension of
GARCH models to mutivariate settings provides a number of different
specifications although most of them are highly parameterized, for
details cf. Bauwens et al. (2006) and Tsay (2006). In this paper, we
present a very parsimonious multivariate multifractal model with only
a minimum of parameters. In the bivariate case our model can be
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viewed as a special case of the more complex approach of Calvet et al.
(2006) but it can be more easily extended to trivariate settings and
beyond. Our main contribution in this paper is the derivation of a set of
moment conditions that allows easy and fast estimation of this multi-
variate model.

The rest of this paper is organized as follows: Section 2 presents a
brief review of multifractal models. Section 3 introduces a parsimo-
nious multivariate multifractal model and details how it can be
estimated via GMM. Monte Carlo simulations are conducted to assess
the efficiency of the estimates. Section 4 provides an empirical
application to a trivariate series of exchange rates. Concluding remarks
are provided in Section 5. The Appendices A and B provides details of
the analytical moment conditions.

2. Review of multifractal models

Mandelbrot et al. (1997) introduced the multifractal model of asset
returns (MMAR) adapting his 1974 model of cascades of energy flux in
statistical physics to the dynamics of financial volatility. In physics, these
“cascades” are typically modeled by multiplicative operations on prob-
ability measures, cf. Mandelbrot (1974) and Harte (2001). However, in a
time series context the combinatorial nature of MMAR appears unfortu-
nate and with the non-causal nature of the time transformation from
chronological to “business” time one also inherits non-stationarity of the
resulting process due to the inherent restriction to a bounded interval.

These limitations have been overcome by the introduction of
iterative versions of multifractal processes, the most seminal develop-
ment being the Markov-switching multifractal model (MSM), cf. Calvet
and Fisher (2001, 2004). In their approach, asset returns are modeled
as:
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with ut drawn from a standard Normal distribution N(0, 1) and
instantaneous volatility being determined by the product of k volatility
components or multipliers Mt

(1), Mt
(2)…, Mt

k( ), and a constant scale
parameter σ. Volatility components are renewed at time t with
probability γi depending on their rank i within the hierarchy of
multipliers or remain unchanged with probability γ1 − i. The transition
probabilities are specified by Calvet and Fisher (2001, 2004) in a
specific form that guarantees consistency between the discrete-time
MSM and a continuous-time limiting multifractal process built upon a
hierarchy of Poisson processes of volatility components. Convergence
of the discrete model to its continuous-time counterpart holds if
transition probabilities are specified as:
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with parameters γ ∈ [0, 1]1 and b ∈ (1, ∞).
This iterative version of the multifractal model preserves the hier-

archical structure of MMAR while dispensing with its restriction to a
bounded interval. With Markovian structure, this model is completely
“well-behaved” (i.e. it shares all the convenient properties of Markov-
switching processes), and it is capable of capturing some important
properties of financial time series, namely, volatility clustering and the
power-law behaviour of the autocovariance function of absolute moments:
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where the function d(q) indicates that different powers q of absolute
returns are characterized by different hyperbolic decay factors of their
autocovariances. It is worthwhile to note, however, that the power-law
behavior of the MSM model holds only approximately in a preasymp-
totic range. Rather than displaying asymptotic power-law behavior of
autocovariance functions in the limit t → ∞ or divergence of the
spectral density at zero, the Markov-switching MF model is rather
characterized by only ‘apparent’ long memory with an approximately

hyperbolic decline of the autocorrelation of absolute powers over a
finite horizon and exponential decline thereafter. In particular, ap-
proximately hyperbolic decline as expressed in Eq. (3) holds only over
an interval τ b1 ≪ ≫ k with b the parameter of the transition prob-
abilities of Eq. (2) and k the number of hierarchical cascade levels.

3. Multivariate multifractal model

3.1. A parsimonious framework: volatility correlations without
additional parameters

One of the common motivations of extending univariate asset
pricing models to multivariate ones is modeling the co-movements of
volatility of different assets. Unlike the additive structure of the
volatility dynamics of GARCH and stochastic volatility models, multi-
fractal models conceive volatility as a hierarchical product of hetero-
geneous components. This feature allows us to decompose volatility
into a hierarchical multiplicative sequence of volatility components
with different frequencies. The range of these components can stretch
from higher frequencies (daily or even intra-daily) to more persistent
ones reflecting prevailing long term macroeconomic or other factors
which might jointly affect different assets to varying degrees. Such
common or idiosyncratic factors will be captured by joint or isolated
components within the hierarchy of volatility factors. This particular
construction allows us to model volatility correlations among assets
without the need to introduce new parameters that would be hard to
estimate.1 We can modulate the volatility correlations in this frame-
work via the number of joint components. This is different from the
approach of Calvet et al. (2006) who introduce two additional para-
meters capturing the probablity of joint arrivals of volatility innova-
tions as well as the strength of volatility correlations within a bivariate
MSM. While our model is nested as a special case in this more general
approach, it has the advantage that it can easily be extended to higher
order multivariate settings without having to cope with an increase in
the number of parameters. This also distinguishes our approach from
the multivariate multifractal random walk of Bacry et al. (2000) that
comes with a full nxn matrix of additional parameters regulating the
volatility dependence among n single time series.

Let us consider an N-dimensional process governing asset returns
evolving in discrete time over the interval T[0, ] with equally spaced
discrete time points t T= 1, …, , and r r r= ( , …, )′t N1 :

r σ g M u= . *[ ( )] . * ,t t t
1/2 (4)

where σ, ut are N × 1 vectors and .* denotes element by element
multiplication, ut follows the multivariate standard Normal distribu-
tion with variance-covariance matrix Σ:

σ is a vector of constant scale parameters and can be viewed as
unconditional standard deviation. g M( )t is a N × 1 vector of the
products of multifractal volatility components, i.e.,
g M g M g M( ) = [ ( ), …, ( )]′t t N t1, , :
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Eq. (5) states that each element q N= 1, …, of g M( )t is the
instantaneous volatility of a univariate multifractal process. Within
this framework, we introduce volatility co-movements in a parsimo-
nious way without any additional parameters assuming that the N time
series share a number of j joint cascades that govern the strength of
their volatility correlations. Consequently, the larger j, the higher the
correlation between them. Factors responsible for co-movements of the

1 Our approach of allowing for different degrees of correlation at different frequencies
is similar to studying such correlations via wavelet coherence analysis, cf. Ramsey (2002)
for an introduction and Barunik et al. (2016) for a recent application.
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