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a b s t r a c t

This work presents a robust algorithm for phase unwrapping. The proposed algorithm is based on the
expansion of the estimated phase through a linear combination of a set of Basis Functions. We present a
novel weighted robust functional which is minimised using a two step strategy. This model allows us to
reduce the influence of noise and to remove inconsistent pixels in the estimation of the unwrapped
phase. The proposed model assumes that the phase is smooth. Under this assumption, experiments
demonstrate that if the phase is corrupted by high levels of noise, our model presents a better
performance than state of the art algorithms. For low levels of noise, the results are comparable.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The phase unwrapping process [1–6] is an important stage for
interferometric data processing, Synthetic Aperture Radar (SAR)
interferometry [7–14], Magnetic Resonance Imaging (MRI) [15],
profilometry by fringe pattern projection [16], to mention just some
applications. There are different approaches for phase unwrapping
algorithms; some reviews on the topic are reported in [17–20] and
references therein.

According to Itoh [1], the first differences of the unknown
unwrapped phase ϕ are related to the wrapped first differences of
the wrapped phase ψ by

ϕðaÞ�ϕðbÞ ¼Wðψ ðaÞ�ψ ðbÞÞþn; ð1Þ

where a and b are neighbouring pixels, W is the wrapping operator,
and n is a probable residual; see notation in Section 2.1. Then, the
phase unwrapping process can be achieved by means of a least
squares approach [21]; this is discussed in more detail in Section 2.1.

The main problem of least squares based formulations is that
the residual n in (1) is not Gaussian, and as a consequence, the
computed unwrapped phase may have large distortions [22]. In
order to solve this problem, weighting techniques or robust
formulations can be useful to achieve an accurate wrapped phase
[20,22–24].

On the other hand, a Radial Basis Functions (RBF) expansion for
phase unwrapping was recently proposed in [25]. An advantage of the
RBF based unwrapping method is the implicit filtering of the
unwrapped phases. This method produces accurate wrapped phases
when the noise level is relatively low. However, the results are

severely deteriorated for high levels of noise. In this work, we propose
a new model for phase unwrapping that also approximates the
reconstructed phase through a linear combination of a set of func-
tions. Similar to Ref. [25], we approximate the unwrapped phase
using RBF, although our proposal has two main differences with
respect to [25]: first, we based our model on a robust potential
[24,26], and second, we also introduced a novel weight to the robust
functional, which allows us to control inconsistent pixels [22,19].
These two modifications lead to a weighted robust functional for
phase unwrapping which is less sensitive to noise and is also able to
automatically remove inconsistent pixels in the parameter estimation
process. The experimental results show a better performance of the
proposed model over the least-squares-based RBF model for phase
unwrapping [25] in the case of high levels of noise. When the noise
level is low, the results of our approach are comparable to results
achieved by state of the art methods, including the least-squares-
based RBF model [25]. Since our method is based on RBF, it performs
an implicit noise filtering, opposite to the robust unwrapping method
recently reported in [4,6,20].

The structure of the paper is as follows. In Section 2 we present
an overview of the phase unwrapping problem. Section 3 presents
our proposal with a detailed description of the newmodel. Section 4
presents numerical experiments that compare the results achieved
by our proposal with state of the art algorithms. Finally, in Section 5,
we present our conclusions.

2. Brief review of phase unwrapping

In this section, we briefly explain the phase unwrapping problem
and introduce the notation used in this work. Next, we briefly
review the RBF approach for phase unwrapping [25].
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2.1. Phase unwrapping description

Let ðx; yÞAL be a pixel in the lattice L¼ fðx; yÞjx¼ 1;2;
…;Nx; y¼ 1;2;…;Nyg, where Nx and Ny are the numbers of rows
and columns of the image, respectively. Then, given the wrapped
phase ψ ðx; yÞ, the problem consists in computing the unwrapped
phase ϕðx; yÞ; the phases are related through the wrapping operator
Wð�ÞA ð�π;π� in the following way:

ψ ðx; yÞ ¼Wðϕðx; yÞÞ ¼defϕðx; yÞþ2kðx; yÞπ; ð2Þ
8ðx; yÞAL, and kðx; yÞAZ is an integer field such that ψ ðx; yÞA
ð�π;π�. In order to compute ϕðx; yÞ, one needs to invert the
operator W, which is equivalent to finding the integer field kð�; �Þ,
which in turn is an ill-conditioned problem if no further informa-
tion is added. Let us define the standard discrete derivatives and
gradient as

Δxϕðx; yÞ ¼ϕðxþ1; yÞ�ϕðx; yÞ; ð3aÞ

Δyϕðx; yÞ ¼ϕðx; yþ1Þ�ϕðx; yÞ; ð3bÞ

∇ϕðx; yÞ ¼ ½Δxϕðx; yÞ;Δyϕðx; yÞ�T ; ð3cÞ
and the wrapped discrete derivatives of ψ ð�; �Þ as follows:

ψω
x ðx; yÞ ¼

defW½Δxψ ðx; yÞ�; ð4aÞ

ψω
y ðx; yÞ ¼

defW½Δyψ ðx; yÞ�: ð4bÞ

Assuming that ( ðx; yÞ, such that j∇ϕðx; yÞj14π, one can estimate
the unwrapped phase ϕðx; yÞ using a standard least square for-
mulation [22]. Since the least square procedure corresponds to the
maximum likelihood estimation based on Gaussian noise (resi-
duals), the classic least square algorithm for phase unwrapping is
not reliable, since the wrapped phase is contaminated by impulsive
noise produced by wrapping phase jumps larger than π [22].

2.2. Radial Basis Function for phase unwrapping

Ref. [25] presents an alternative to estimate the unwrapped
phase ϕðx; yÞ by means of linear combinations of RBF. They approx-
imate the phase with a linear combination based on a single
function (i.e., RBF), and use the following expansion:

ϕðx; yÞ ¼
XNi

i ¼ 1

XNj

j ¼ 1

aijϕijðx; yÞ ¼ϕT ðx; yÞa; ð5Þ

where Ni and Nj correspond to the number of base functions in the
‘x’- and ‘y’-directions, respectively, and the base functions ϕijðx; yÞ ¼
ϕiðxÞϕjðyÞ are equally spaced in the domain of the image. In particular,
in [25] the authors use Gaussian functions:

ϕkðzÞ ¼ exp �ðz�μkÞ2
2γ2k

 !
; with zA x; y

� � ð6Þ

where μk and γk are the position and the width of the Gaussian
function, respectively; ϕðx; yÞ and a are the vectorisation1 of the
matrices ½ϕijðx; yÞ� and ½aij�, respectively; i.e.,

ϕðx; yÞ ¼def vec ½ϕijðx; yÞ�i ¼ 1;…;Ni
j ¼ 1;…;Nj

� �
: ð7Þ

If we define

ξkðzÞ ¼def �
z�μk

γ2k
; ð8Þ

and compute the gradient of ϕðx; yÞ using the expansion (5), one
obtains

∂
∂x
ϕðx; yÞ ¼

X
i;j

aijξiðxÞϕijðx; yÞ ¼ϕT
x ðx; yÞa; ð9aÞ

∂
∂y
ϕðx; yÞ ¼

X
i;j

aijξjðyÞϕijðx; yÞ ¼ϕT
y ðx; yÞa; ð9bÞ

where ϕxðx; yÞ and ϕyðx; yÞ are the vectorisation of the matrices
½ξiðxÞϕijðx; yÞ� and ½ξjðyÞϕijðx; yÞ�, respectively; i.e.,

ϕxðx; yÞ ¼def vec ½ξiðxÞϕijðx; yÞ�i ¼ 1;…;Ni
j ¼ 1;…;Nj

� �
; ð10aÞ

ϕyðx; yÞ ¼def vec ½ξjðyÞϕijðx; yÞ�i ¼ 1;…;Ni
j ¼ 1;…;Nj

� �
: ð10bÞ

We can write the least square cost function for phase unwrapping
[19,25] as follows:

UðaÞ ¼
X
ðx;yÞ

ϕT
x ðx; yÞa�ψω

x ðx; yÞ
h i2

þ ϕT
y ðx; yÞa�ψω

y ðx; yÞ
h i2

; ð11Þ

or its corresponding matrix formulation

UðaÞ ¼ JΦxa�ψω
x J22þ JΦya�ψω

y J22: ð12Þ

Then, the minimisation of the last function can easily be obtained with
the following closed formula:

an ¼ ðΦT
xΦxþΦT

yΦyÞ�1ðΦT
xψ

ω
x þΦT

yψ
ω
y Þ: ð13Þ

Thus, the estimation of the unwrapped phase is computed with

ϕ̂ðx; yÞ ¼ϕT ðx; yÞan; 8ðx; yÞAL: ð14Þ
This approach is based on a least square formulation. The

method yields a good phase reconstruction when the noise level
is low and the phase is smooth, see Section 4.2; however, the
results deteriorate when the noise level increases, principally
producing a reduced dynamic range of the estimated phase. In
the next subsection, we present a robust formulation that
diminishes this problem.

3. Weighted robust RBF for phase unwrapping

In order to solve the main problem of the RBF formulation for
Phase Unwrapping, we present a weighted-robust formulation
that tries to automatically remove the contribution of noise
information in the estimation of a and also takes into account
the dynamic range problem of the RBF model. The new functional
is

Uða; sÞ ¼
X
ðx;yÞ

υ2ðx; yÞ ρ rxðx; yÞð Þþρ ryðx; yÞ
� �� �

þλðs�1Þ2; ð15Þ
where υðx; yÞ is an inconsistency detector; i.e., υðx; yÞ ¼ 1 if (x,y) is
an inconsistency site, and υðx; yÞ ¼ 0 otherwise, ρð�Þ is a robust
function [26] and rxðx; yÞ, ryðx; yÞ are residuals defined as follows:

rxðx; yÞ ¼ϕT
x ðx; yÞa�sψω

x ðx; yÞ; ð16aÞ

ryðx; yÞ ¼ϕT
y ðx; yÞa�sψω

y ðx; yÞ; ð16bÞ

where s is a scaling factor that allows correcting the dynamic
range of the unwrapped phase, λ40 is a regularisation parameter,
and finally, the last term of (15) promotes that the scaling factor be
close to 1.

1 The vectorisation of a matrix is a linear transformation which converts the
matrix into a column vector.
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