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a b s t r a c t

In many applications such as Photometric Stereo, Shape from Shading, Differential 3D reconstruction and
Image Editing in gradient domain it is important to integrate a retrieved gradient field. In most of the
real experiments, the retrieved gradient fields correspond to nonintegrable fields (i.e. they are not
irrotational on every point of the domain). Robust approaches have been proposed to deal with noisy
nonintegrable gradient fields. In this work we extend some of these techniques for the case of dynamic
scenes when the gradient field in the x�y domain can be estimated over time. We exploit temporal
consistency in the scene to ensure integrability and improve the accuracy of the results. In addition, two
known integration algorithms are reviewed and important implementation details are discussed.
Experiments with synthetic and real data showing some potential applications for the proposed
framework are presented.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In many applications such as Photometric Stereo [1], Shape
from Shading [2], Differential 3D reconstruction [3] and Image
Editing in gradient domain [4,5] it is important to integrate a
retrieved gradient field. The main problem when dealing with
estimated gradient fields is that due to empirical errors and noise,
these gradient fields are not usually integrable i.e. they do not
represent irrotational fields. Classical approaches are focus on least
squares solutions [6,7], or calculate the orthogonal projection onto
a vector subspace defined by a finite set of basis functions to
enforce integrability [8]. These techniques lack of robustness [9]
and they are not suitable methods for data with large noise and
outliers. Recently, more complex and robust approaches have been
proposed; Agrawal and Raskar proposed a purely algebraic
approach, they first showed that enforcing integrability can be
formulated as solving a single linear system Ax¼b over the image,
they showed conditions under which the system can be solved
and a method to get to those conditions based on graph theory
[10]. Vogel et al. presented a method based on homogeneous
higher order regularization, thus it becomes possible to estimate
the surface depth directly by solving a single partial differential
equation [11]. Agrawal et al. [12] also proposed the use of spatially
varying anisotropic weights, to achieve significant improvement in
reconstructions, they propose (i) α-surfaces using binary weights,
where the parameter α allows trade off between smoothness and

robustness, (ii) M-estimators and edge preserving regularization
using continuous weights and (iii) Diffusion using affine transfor-
mation of gradients. More recently, Ng et al. proposed the use of
kernel basis functions, which transfer the continuous surface
reconstruction problem into high-dimensional space, where a
closed-form solution exists [13]. For a detailed description of some
of these algorithms we recommend Agrawal's thesis [9] which is
an excellent survey of surface reconstruction techniques from
gradients.

Most of the integration algorithms were developed for two
dimensional problems where one knows the estimations of the
x and y partial derivatives of an unknown function zðx; yÞ. To the
best of our knowledge none of them were extended to deal with
dynamic scenes (i.e. zðx; y; tÞ). In this work we present a general-
ization for some well known integration algorithms to the case of
dynamic scenes and we exploit the consistency in the movement
of the scene to guide the integration process and make the
algorithms more robust to random noise. The work that most
closely resembles to ours is [14] where a new framework for
spatio-temporal video editing in gradient domain is presented. In
that case, it was assumed that the estimation of the x, y and t
partial derivatives was available and that information was used to
filter and process videos in the x, y and t gradient space. It is
important to highlight that, in contrast to the problem treated in
[14], we deal with problems in which we only have estimations of
x and y partial derivatives (e.g. Differential 3D reconstruction and
Photometric Stereo) and no information about the temporal partial
derivative is available.

Section 2 covers the theoretical aspects of the presented techni-
que, reviews some known integration methods and discusses some
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implementation details. Section 3 presents some experimental
results: one synthetic example, a video from a public repository
and a retrieved gradient field are processed and analyzed. Finally,
Section 4 concludes the work and provides some possible future lines
of research.

2. Variational formulation

In the following, we will assume that it is possible to estimate x
and y partial derivatives (gxðx; y; tÞ and gyðx; y; tÞ respectively) for
some unknown function z : Ω� ½0; T �-R where Ω is an open
subset of R2. The estimated gx and gy partial derivatives of z can be
obtained from different methods depending on the field and
context. For example, for depth retrieval we recently presented a
novel technique capable of providing the depth spatial partial
derivatives over the time for a dynamic scene [3].

We can assume that

gxðx; y; tÞ � zxðx; y; tÞ and gyðx; y; tÞ � zyðx; y; tÞ ð1Þ

but the equality usually does not hold because of noise and surf-
ace singularities. In particular, this implies that in most of the
cases gxðx; y; tÞ and gyðx; y; tÞ represent a not-integrable gradient
field, i.e.1

∇xy � ðgx; gyÞa0 ð2Þ

for some x, y and t. To enforce integrability, robust approaches
must be considered. One of the simplest and oldest methods
consists in minimizing the energy function:

E½u� ¼
Z
Ω

ux�gx
2þ uy�gy

2
�� � dx dy������� ð3Þ

whose Euler–Lagrange equation leads to the Poisson equation

∇2
xyu¼ divxyðgx; gyÞ: ð4Þ

Eq. (4) can be solved very fast and efficiently e.g. using Cosine or
Fourier transformations (see [5] and references therein) for each
time t independently.

The previous approach is a straightforward manner to solve the
integration problem in a Least Squares (LS) sense, and for many
applications represents the simplest solution to the problem.
However, the LS solution lacks robustness and the result is
significantly affected when data has noise and outliers [9]. Because
of the simplicity and efficiency of LS methods, they may be tried
always first. For smooth surfaces or noiseless experiments it may
be enough to achieve an accurate solution. If borders are not
preserved or surface details are lost after reconstruction, then it is
worth to follow a more complex anisotropic approach.

We will also focus on a more robust method that consists in
integrating an affine transformation of Gradients using a Diffusion
Tensor [9]. This technique is based on Anisotropic Diffusion (AD)
ideas proposed in the context of image restoration [15] and multi-
scale image analysis [16]. We will focus on the ideas proposed by
Weickert [17,18] and we will adapt the general framework to the
integration problem. Instead of solving the Poisson equation given
by Eq. (4), the differential equation

divxy D∇xyu
� �¼ divxyðDðgx; gyÞÞ ð5Þ

is considered. D represents an affine transformation (2�2 sym-
metric matrix for each x, y and t). The equation above can be
thought as the Euler–Lagrange equation of the following energy

function:

E½u� ¼
Z
Ω
ðd11ðux�gxÞ2þðd12þd21Þðux�gxÞðuy�gyÞ

þd22ðuy�gyÞ2Þ dx dy ð6Þ

where dijðx; y; tÞ can be interpreted as weights on the gradient
field. Intuitively, the main idea is to identify features such as
borders and exploit local coherence to guide the integration
through smooth and coherent areas, avoiding large discontinuities
and noisy points. To this end, the affine transformation D is
obtained considering gx and gy and calculating (for each ðx; y; tÞ)
the 2�2 matrix

Hðx; y; tÞ ¼ ðgx gyÞT ðgx gyÞ: ð7Þ
The resulting matrix H has an orthonormal basis of eigenvectors
v1 and v2, where v1 is parallel to the local gradient and v2 is
perpendicular to it. H can be rewritten as

H¼ v1 v2½ �
μ1 0
0 μ2

" #
vT1
vT2

" #
: ð8Þ

In order to penalize large gradients, H eigenvectors are modified
following [17],

λ2 ¼ 1

λ1 ¼
1 if μ1 ¼ 0
βþ1�expð�3:315=μ4

1Þ if μ140

(8><
>: ð9Þ

and finally the tensor is obtained preserving H orientation but
with the modified eigenvalues:

D¼ v1 v2½ � λ1 0
0 λ2

" #
vT1
vT2

" #
: ð10Þ

The parameter β in Eq. (9) was introduced in [9] to ensure
positive-definiteness of D but was not mentioned in [16,18]. We
set β¼ 0:02 in the presented experiments in order to maintain
consistency with [9]. In addition, we compared the results to those
obtained for β¼ 0 (as is described in [16,18]); for the set of
experiments we performed, the results were equivalent.

Until now, two known integration strategies have been described.
The first (LS method) is one of the simplest and computationally
more efficient approaches to the problem and the second one
(Anisotropic Diffusion) is a more complex and robust approach. Both
were developed for two dimensional problems where the gradient
field is a function of the spacial coordinates i.e. gxðx; yÞ and gyðx; yÞ.
Nevertheless, these approaches can be trivially generalized for the
case of time dependant gradient fields by performing the integration
for each time t independently and thus zðx; y; tÞ ’ðgxðx; y; tÞ,
gyðx; y; tÞÞ for each tA ½0 T �. In this work, we will explore non-
trivial generalizations where the relation of the gradient field over
the time is exploited.

Particularly we will focus on two cases, the inspection of scenes
that vary at constant speed and scenes that vary at constant accelera-
tion ratios. We focus on these two quantities because they have an
important physical meaning, but the presented theory is general and
the consideration of higher order derivatives is straightforward.

Instead of minimizing the expressions given in Eqs. (3) and (6)
for each frame independently, the idea is to consider

E½u� ¼
Z
Ω�½0 T�

ðð1�λÞ ux�gx
2þ uy�gy

2
�� �þλ dαu=dtα 2

�� � dx dy dt
���������

ð11Þ
or

E½u� ¼
Z
Ω�½0 T �

�ð1�λÞ d11ðux�gxÞ2þðd12þd21Þðux�gxÞðuy�gyÞ
�

þd22ðuy�gyÞ2
�
þλ dαu=dtα 2

�� � dx dy dt
�� ð12Þ1 We use ∇xy ¼ ∂=∂x; ∂=∂y

� �
to highlight that the operator is considered in the

Ω domain.
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