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a b s t r a c t

We propose a variational method for integrating information obtained from circular fringe pattern. The
proposed method is a suitable choice for objects with radial symmetry. First, we analyze the information
contained in the fringe pattern captured by the experimental setup and then move to formulate the
problem of recovering the wavefront using techniques from calculus of variations. The performance of
the method is demonstrated by numerical experiments with both synthetic and real data.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Non-contacting measurement is important in many areas,
including medicine, on-line inspection, computer-aided design or
manufacturing and reverse engineering. Traditionally, coordinate
measurement machines have been used for 3-D mechanical part
inspection. They are well established and widely accepted in
industry but suffer from limitations such as high cost and low
measurement speed. On the other hand, optical 3-D sensors have
several advantages over tactile methods. For instance, non-contact
and thus reduce the risk of induced deformations, fast response
potential, full-field working principle, and high data resolution.
Due to recent advances in computing technology, some of these
techniques have become automated, easier to use in applications,
and more efficient in data reduction. This has resulted in the
development of full-field optical techniques that are being used for
real-time profile measurements in a wide range of settings [1].

One of the simplest and most powerful methods to measure
the emerging wavefront from a phase object is deflectometry. This
technique is used for surface measurement where the local slopes
of the surface are measured optically and the surface itself is
reconstructed using an integration procedure. This approach has
found several practical applications mainly due to its simplicity of
operation.

The evaluation of optical elements is an active research field
[2,3]. Recently, aspherical and freeform optical surfaces have

attracted attention owing to their optical performance. Because
of their design, these surfaces typically cannot be exactly mea-
sured using the same techniques employed with spherical sur-
faces, thus a suitable choice of the experimental setup and data
processing methods are important for obtaining their accurate
characterization. For this purpose, we present a method to
integrate the obtained information from a deflectometry setup
with circular fringe patterns. In the following sections, first we
analyze the information contained in the fringe pattern captured
by the experimental setup and then move to formulate the
problem of recovering the wavefront using techniques from
calculus of variations. The resulting algorithm performance is
tested by two numerical wavefront reconstructions.

2. Principle of measurement and information processing

2.1. Experimental modeling

The experimental setup used in this work is based on the
deflectometric technique proposed by Massig [4] and used on
several research works [3,5,6]. In this setup, a CCD camera is
focused on a computer monitor with the phase object situated
between them. The monitor is used to display a fringe pattern,
which is deformed by the phase object and the fringe pattern is
imaging by the camera. In this kind of setup, parallel straight
fringes are usually displayed on monitor. The fringe pattern
captured by the camera is described by [3–5]

Ix ¼ axþbx cos
2π
P
ðx � vþD∇ϕ � vÞ

� �
; ð1Þ
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where x¼ ðx; yÞ, ax is the background illumination, bx is the
amplitude modulation, v¼ ð cos φ; sin φÞ is the normal direction
vector of the pattern displayed on the screen, the term
∇ϕ¼ ð∂ϕ=∂x; ∂ϕ=∂yÞ is the wavefront gradient, P is the pattern
period, D is a constant related to the position of the lens and �
denotes the dot product. The resultant measurement of this
technique is the directional derivative of the wavefront ϕ oriented
in the direction of v. A common procedure to estimate the
wavefront is to acquire two or more directional derivatives and
integrate them; however, one drawback of this procedure is the
computational time employed to acquire and integrate a large
number of directional derivatives [7,8].

Although parallel straight fringes have been extensively used in
optical metrology, a suitable choice to measure objects with radial
symmetry is the use of circular fringe patterns. These patterns are
capable of measuring in the x- and y-directions at the same time,
i.e. this is equivalent to a radial derivative [9]. The circular fringe
pattern deformed by the phase object is described by

Ix ¼ axþbx cos
2π
P
ðrþDΦxÞ

� �
; ð2Þ

where r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
and Φx represents the gradient information

obtained from the phase object. It is important to remark that
because the wavefront shifts the fringe pattern in the normal
direction, this kind of fringe pattern is not sensitive to rotational
changes on the gradient field; for a circular fringe pattern this
means into the radial direction. As it was reported previously [9],
the circular fringe patterns are capable of measurement of radial
derivative, meaning that the gradient information obtained from
the phase object can be expressed as

∂ϕ
∂r

¼Φ: ð3Þ

Moreover, consider a point x1 ¼ ðr1 cos θ1; r1 sin θ1Þ of the fringe
pattern defined in Eq. (2); if this point is rotated by an angle α,
the resultant point will be x2 ¼ ðr1 cos ðθ1þαÞ; r1 sin ðθ1þαÞÞ. As
one can see, both points have the same radius, therefore they will
have the same intensity value; that is, the fringe pattern will not
undergo any change and consequently, any rotational movement
cannot be detected; that is

∂ϕ
∂θ

� 0: ð4Þ

2.2. Variational formulation

In the following, we shall describe how to formulate the
problem of recovering the wavefront ϕ using techniques from
calculus of variations. To this end, we propose the following
minimization problem

min
ϕ

EðϕÞ �
Z
Ω

∂ϕ
∂r

�Φ
� �2

dxþ
Z
Ω

1
r
∂ϕ
∂θ

� �2

dxþλRðϕÞ
( )

; ð5Þ

where Φ is the gradient field obtained from the fringe pattern,
Ω� R2 is the domain of integration, RðϕÞ is a regularization term
to be selected and λ40 a Lagrange multiplier. The first two
functionals in EðϕÞ are fitting terms which come from our above
discussion (Eqs. (3) and (4)), while the regularization term RðϕÞ is
selected by using a priori information of the wavefront hence
imposing properties to it.

By using the well-known formulas

∂ϕ
∂r

¼ cos θ
∂ϕ
∂x

þ sin θ
∂ϕ
∂y

1
r
∂ϕ
∂θ

¼ � sin θ
∂ϕ
∂x

þ cos θ
∂ϕ
∂y

;

it is possible to re-write the energy EðϕÞ in vectorial representation
as follows:

EðϕÞ ¼
Z
Ω
ðp �∇ϕ�ΦÞ2dxþ

Z
Ω
ðq �∇ϕÞ2dxþλ

Z
Ω
j∇ϕj2dx; ð6Þ

where p¼ ð cos θ; sin θÞ is the orientation vector, q¼ ð� sin θ;
cos θÞ and we have defined RðϕÞ as the L2-norm of the gradient
of ϕ. We selected this norm given the smooth properties of the
wavefront to be recovered. Different regularization terms such as
the Total Variation [10] of ϕ or even high-order ones, see Ref. [11]
for an extensive review, may also be used depending upon the
properties of ϕ.

In order to minimize Eq. (6), the first order optimality condition
or Euler–Lagrange equation has to be derived. In the formal
derivation we assume that the vector field ϕ is smooth enough
such that gradients are well defined and the variation δϕ has
compact support over Ω so that we can use the divergence
theorem to get rid of the boundary term.

Theorem 2.1. Let EðϕÞ be defined as in (6). Then the firs variation is
given by

∂EðϕðxÞÞ
∂ϕ

¼ �∇ �wðxÞ; xAΩ;

with boundary conditions

∂ðp � ∇ϕ�ΦÞp
∂ν

¼ 0;
∂ðq � ∇ϕÞq

∂ν
¼ 0; and

∂ϕ
∂ν

¼ 0 ð7Þ

where ν denotes the outer normal to the boundary and the flux field
w is given by

w¼ ðp � ∇ϕ�ΦÞpþðq � ∇ϕÞqþλ∇ϕ: ð8Þ

The proof of this Lemma is presented in the Appendix.

2.3. Numerical solution

First of all the following transformation must be considered:

y¼ r−ro; x¼ c−co; θx;y ¼ arctan2ðy; xÞ
where (r,c) is the position (row and columns) given by the field
gradient matrix, ðro; coÞ is the center of rotation and arctan2 is the
tangent inverse function in the range ð�π;π�.

Let ϕi;j ¼ϕðx; yÞ to denote the value of a grid function ϕ at point
ði; jÞ ¼ ðx; yÞ defined on the cell-centered grid

Λh ¼ fðx; yÞAΛjðx; yÞ ¼ ðð2i�1Þhx=2; ð2j�1Þhy=2Þ; 1r irm;

1r jrng;
consisting of m� n cells of size hx � hy with hx ¼ 1=m;hy ¼ 1=n the
grid spacing. Note that Ωh �Λh is the true region of integration.

To approximate the derivatives, we use forward and backward
finite differences defined as follows:

δ7
x ϕi;j ¼ 7 ðϕi71;j�ϕi;jÞ=hx; and δ7

y ϕi;j ¼ 7 ðϕi;j71�ϕi;jÞ=hy:
Hence the numerical approximation of the Euler–Lagrange equa-
tion is

∇ �wi;j ¼ δ�
x w1i;jþδ�

y w2i;j ¼ 0 in Ωh; ð9Þ
where

wi;j ¼ �ψ i;jð cos θi;j; sin θi;jÞT �ϑi;jð� sin θi;j; cos θi;jÞT

�ðδþ
x ϕi;j; δ

þ
y ϕi;jÞT ;

ψ i;j ¼ cos θi;jδ
þ
x ϕi;jþ sin θi;jδ

þ
y ϕi;j�Φi;j and

ϑi;j ¼ � sin θi;jδ
þ
x ϕi;jþ cos θi;jδ

þ
y ϕi;j:

By using backward derivatives to compute the divergence and
doing some algebraic simplification, Eq. (9) can be written as a
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