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• This note presents a method for computing detection error probabilities in a closed form.
• The method is applicable to a particular class of log-consumption models with i.i.d. Gaussian errors.
• It provides the exact value of detection error probabilities and enables us to analytically show their properties unlike the existing simulation-based

method.
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a b s t r a c t

This note describes a simplemethod for computingdetection error probabilities under log-consumption
models with i.i.d. Gaussian errors. The method is applicable to a class of models widely used in the
literature, including the random walk, trend-stationary, long-run risk, and idiosyncratic risk models.
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1. Introduction

Hansen and Sargent (2008a) and Barillas et al. (2009) used de-
tection error probabilities to demonstrate that a moderate amount
of concern about model misspecification under multiplier pref-
erences can substitute for an implausibly high level of risk aver-
sion. The computation of these detection error probabilities is
under the assumption that the log consumption streams an agent
faces in an endowment economy follow a random walk or trend-
stationary process with i.i.d. Gaussian errors. The computational
procedure relies entirely on simulation. In this note, we show that
it is possible to compute the detection error probabilities using the
cumulative distribution function under a class of models widely
used in the literature, including the randomwalk, trend-stationary,
long-run risk, and idiosyncratic risk models.

Under the random walk and trend-stationary models, Djeutem
(2014) was the first to show that detection error probabilities
can be calculated in a closed form. However, this note extends
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these results and makes the following unique contributions. First,
it demonstrates that there are closed-form solutions for detection
error probabilities if the value function is linear in i.i.d. Gaussian
shocks, which also holds for a particular class of long-run and
idiosyncratic risk models.1 Thus, it provides a generalization of the
formula in two directions.2 Second, it presents a method for cal-
culating standard errors of the overall detection error probability
using the delta method.

The advantages of our result described here are twofold. The
first is that it more quickly and easily provides the exact value
of the detection error probabilities and enables us to test for
their statistical significance unlike the existing simulation-based
method. The second is that it enables us to reveal analytically
their properties and therefore facilitates our interpretation. Our
method, being based on a closed-form solution, is also useful if
the overall detection error probability must be computed many

1 The intuition for this is given in footnote 3 using a simple static setting.
2 Our proof differs from that of Djeutem (2014) in several respects and includes

a correction of his proof.
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times, which holds for the asset-pricing applications inHansen and
Sargent (2008a) and Barillas et al. (2009).

This note is organized as follows. Section 2 briefly reviews the
framework and computation procedure proposed by Hansen and
Sargent (2008a) and Barillas et al. (2009). Section 3 explains our
approach and shows how it is applicable to their asset-pricing ap-
plications. Section 4 discusses the extensions and some limitations
of our formulas. All proofs are in the separate appendix.

2. The framework and computation procedure

Hansen and Sargent (2008a) and Barillas et al. (2009) used the
finding that risk-sensitive preferences and multiplier preferences
are observationally equivalent to reinterpret the quantitative find-
ing of Tallarini Jr. (2000) concerning the risk aversion parameter.
The risk-sensitive preferences are a special case of the recursive
preferences suggested by Epstein and Zin (1989) and Weil (1990),
in which the intertemporal elasticity of substitution is fixed at
unity:

Ut = ct − βθ ln
(
Et

[
exp

(
−

Ut+1

θ

)])
, (1)

where ct is log consumption and β ∈ (0, 1) is a discount factor. The
parameter θ represents a measure of risk aversion

θ = −
1

(1 − β)(1 − γ )
, (2)

where γ is a coefficient of relative risk aversion (RRA).
From the viewpoint of multiplier preferences, this parameter

θ can be interpreted as the degree of an agent’s concern about
model misspecification. The detection error probabilities are used
to quantify the degree towhich the agent fearsmodelmisspecifica-
tion. To illustrate the calibrationmethod, letmodel A be an approx-
imating model (a reference model), and let model B be a worst-
case model associated with θ−1 (an alternative model in proximity
to model A). Let pA denote the probability that a likelihood-ratio
test selects model B when model A generates the data. Define
pB similarly as the probability that selects model A when model
B generates the data. Finally, define the overall detection error
probability p(θ−1) by p(θ−1) ≡

1
2 (pA + pB).

In Hansen and Sargent (2008a) and Barillas et al. (2009), model
A is assumed to be the following randomwalk and trend-stationary
models

ct = µ + ct−1 + σϵϵt , (3)

ct = ζ + µt + zt , zt = ρzt−1 + σϵϵt , |ρ| < 1, (4)

where ϵt ∼ i.i.d.N(0, 1). The corresponding worst-case model
(model B) is then given by

ct = µ + σϵwRW + ct−1 + σϵϵt , wRW ≡ −σϵ/θ (1 − β), (5)

ct = µ1 +µ2t +σϵwTS +ρct−1 +σϵϵt , wTS ≡ −σϵ/θ (1−ρβ), (6)

where µ1 ≡ ζ (1− ρ)+ ρµ and µ2 ≡ (1− ρ)µ. The procedure for
calibrating the detection error probabilities developed by Hansen
and Sargent (2008a) and Barillas et al. (2009) (henceforth, the BHS
procedure) proceeds as follows.

1. Set the values of θ−1, β , ζ , µ, ρ, and σϵ . Simulate a path of
length T for ct using model A. Calculate the log-likelihood
ratio, ln(LA/LB), to perform a test for distinguishing model A
from model B. The test selects model A if ln(LA/LB) > 0 and
model B if ln(LA/LB) < 0. Perform this test many times by
simulating a large number of paths under model A, and count
the fraction of ln(LA/LB) < 0

pA ≡ Prob
(
ln
(
LA
LB

)
< 0

)
≈

# ln(LA/LB) < 0
#simulations

. (7)

2. Simulate a large number of paths of length T for ct using
model B. Perform the log-likelihood ratio test, and count the
fraction of ln(LA/LB) > 0

pB ≡ Prob
(
ln
(
LA
LB

)
> 0

)
≈

# ln(LA/LB) > 0
#simulations

. (8)

3. Calculate the overall detection error probability p(θ−1).
4. Repeat steps 1–3 for different values of θ−1 to obtain a graph

of the overall detection error probability versus θ−1 (i.e., a
detection error probability function).

The number of simulations for each computation of pA and pB is
100,000 or 500,000 in the BHS procedure (see Barillas et al. (2009,
p. 2405) and Hansen and Sargent (2008a, p. 320)), so that the total
number of simulations required is 200,000 or 1,000,000 to obtain
one value of the overall detection error probability p(θ−1).

3. Simplification of the procedure

Let Φ(·) be the standard normal cumulative distribution func-
tion. The following proposition states that we can compute p(θ−1)
without relying on simulation under the random walk and trend-
stationary models with i.i.d. Gaussian errors. To our knowledge,
Djeutem (2014) has already noted this claim, but in a different
context and form.

Proposition 1. (i) For the random walk drift model, the detection
error probabilities pA and pB are given by

pA = Φ

(
−

√
T
2

σϵ

θ (1 − β)

)
and pB = 1 − Φ

(√
T
2

σϵ

θ (1 − β)

)
.

(9)

(ii) For the trend-stationary model, they are

pA = Φ

(
−

√
T
2

σϵ

θ (1 − ρβ)

)
and pB = 1−Φ

(√
T
2

σϵ

θ (1 − ρβ)

)
.

(10)

The overall detection error probability p(θ−1) is equal to pA.

A proof for this proposition is in Appendix A. In the proof, the
key is that if the value function Ut is linear in random shocks
ϵt , then a likelihood ratio g(ϵt+1) ≡ π̂ (ϵt+1)/π (ϵt+1) can be
expressed as the exponential of a linear function of ϵt+1. Here,
π (ϵt+1) is a conditional density of a sequence of random shocks
{ϵt+1}, and π̂ (ϵt+1) is some other density in proximity to π (ϵt+1)
(i.e., a distorted density). By this result, the log-likelihood ratio
ln(LA/LB) takes the familiar form under the AR(1) structure. Using
this and the normality assumption of the shocks ϵt , it is shown that
the detection error probability pA in the BHS procedure represents
the cumulative distribution function of a standard normal random
variable (constructed from the i.i.d. Gaussian shocks ϵt ).3 Given
this result, the representation for pB follows from the symmetry
of the standard normal distribution.

3 The intuition of the proof is the following. To see the idea clearly, consider a
simplified static structure. Note that the likelihood ratio g(ϵ) takes the form, g(ϵ) ≡

π̂ (ϵ)/π (ϵ) = exp(−U/θ )/E[exp(−U/θ )]. Then the detection error probability pA is
pA = Prob(select model B|model A generated the data) = Prob(ln g∗(ϵ) < 0|π (ϵ)),
where g∗(ϵ) ≡ 1/g(ϵ). (This inversion is merely for maintaining consis-
tency with LA/LB and is not essential.) If the value function U is linear in ϵ,
say, U = a0 + a1ϵ, then pA = Prob(ϵ < −(θ/a1) ln(E[exp(−(a1/θ )ϵ)])
|π (ϵ)) = Prob(ϵ < −a1/2θ |π (ϵ)), so that the distribution functionΦ(·) can be used
because of ϵ ∼ N(0, 1). Note that while this static-case derivation conveys our idea,
our proof is needed in the dynamic setting that we treated.
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