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h i g h l i g h t s

• Bargaining Theory was previously applied to derive rules governing default of a single debtor having multiple creditors.
• Bankruptcy resolution within payments and interbank loan networks is more complex, due to multiple debtors owing multiple creditors.
• Bargaining Theory is extended to default resolution within such networks.
• Popular resolution rules, derived from Bargaining Theory for single debtor situations, are not similarly justified in financial networks.
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a b s t r a c t

The bankruptcy problem of resolving a single debt owed to multiple creditors is extended to financial
networks, where there are multiple debtors and creditors.
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1. Introduction

The law and economics of default resolution in bankruptcy
typically presume a single debtor that owes multiple creditors.
Butmultiple debtors owe multiple creditors within interbank pay-
ment networks like Fedwire and CHIPS, as well as in decentralized
networks created by complex interbank loan obligations. Nash
Bargaining theory has previously been used to justify two popu-
lar rules for resolving default of a single debtor. I describe how
to extend these rules to financial networks, but find that Nash
Bargaining theory does not justify applying those rules to resolve
defaults in those networks.

2. Default resolution rules

Dagan and Volij (1993) consider the following bankruptcy prob-
lem: one agent owes non-negative amounts denoted c1, c2, . . . , cn
to each of n creditors, but possesses an ability to pay only E ≤
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∑n
j=1cj. The problem arises when the inequality is strict, in which

case default is inevitable andmust be resolved. A feasible allocation
is a vector of default resolution payments x1, x2, . . . , xn such that
∀j, xj ≤ cj and

∑
jxj = E.

Dagan and Volij (op.cit.) study two default resolution rules :
(a) The Proportional rule allocation x1, x2, . . . , xn requires the

debtor to pay the same fractionλ ≤ 1 in resolution to each creditor,
i.e. xj = λcj where λ

∑
jcj = E.

The Proportional rule has a very long history and is the basis for
the extant resolution procedure in bankruptcy law (Kadens, 2010).

(b) The Constrained Equality (CE) rule allocates an equal dollar
payment, denoted x, to each creditor, subject to the constraint
that no one is paid more than originally owed.1 That is, the CE
rule finds an amount x and requires xj = min(x, cj) and

∑
j[xj =

min(x, cj)] = E.

1 Levinthal’s (1918) history of early bankruptcy law notes that ancient Jewish
law required equal dollar (rather than percentage) payments to creditors, subject
to the constraints that this would not compensate any creditors more than they
were owed (op.cit, p. 234).
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Largely using their notation to facilitate comparisons, I gener-
alize this framework to financial networks. In such networks, rep-
resent the payment cij owed by agent i to agent j by a nonnegative
matrix:

C =

⎡⎢⎢⎣
0 c12 . . . c1n
c21 0 . . . c2n
...

...
. . .

...

cn1 cn2 . . . 0

⎤⎥⎥⎦ . (1)

Such networks include interbank lending, checks drawn on one
bank that must be deposited in accounts at another bank, or pay-
ments owed as a result of mutual trading activities on an asset
exchange. It is the nature of these networks that both cij and cji
could be positive, and that there is no partition of indices into
debtors and creditors.

A feasible network allocation is amatrix of resolution payments
xij such that ∀i, j ̸= i : xij ≤ cij and

∑
j̸=ixij = Ei, where Ei is

agent i’s ability to pay. Unlike the classical bankruptcy problem,
here an agent’s ability to pay is endogenous with the allocation,
because any agent i’s ability to pay includes payments it receives
from other agents, i.e. Ei ≥

∑
j̸=ixij. In order to focus on the role

of the interagent obligations matrix (1) rather than the exogenous
component of the distribution of ability to pay, we assume strict
equality, so that default resolution allocations must arise from
redistributing obligations in (1), resulting in a matrix with each
row total equal to its corresponding column total:

X =

⎡⎢⎢⎣
0 x12 . . . x1n
x21 0 . . . x2n
...

...
. . .

...

xn1 xn2 . . . 0

⎤⎥⎥⎦ . (2)

We will use the following numerical example for illustration thro
ughout:

C =

⎡⎢⎣ 0 0 10 0
30 0 20 20
10 30 0 10
10 0 20 0

⎤⎥⎦ . (3)

Inspecting (3), we see that agent #2 owes 70 in total but is owed
only 30 in total. Hence it will have to default on some of these
payments, triggering defaults by agents #3 and #4.

Elimam et al. (1996) and Eisenberg and Noe (2001) focused on
a network default resolution rule in which defaulting agents are
required to proportionally renege on all their respective creditors.
This is the natural generalization of the classical proportional rule
(a). We state this formally below:

(aNet) The Network Proportional rule is a nonnegative matrix (2)
requiring each agent i to pay a fraction λi ≤ 1 in resolution of what
it owes to each of the other agents, i.e.

xij = λicij where
∑
j̸=i

xij = λi

∑
j̸=i

cij =

∑
j̸=i

xji =

∑
j̸=i

λjcji. (4)

The existence of a vector of fractions (λ1, λ2, . . . , λn), that in con-
junction with the obligations matrix C determines the Network
Proportional rule allocation, was established by Eisenberg and Noe
(op.cit.), who showed that one can be computed by solving a
linear programming problem. A simplified exposition is given in
Demange (2015), who solves the following linear program:

λ∗
= argmaxλ1,...,λn

∑
i

λi

∑
j̸=i

cij

s.t. λi

∑
j̸=i

cij −
∑
j̸=i

λjcji ≤ 0; i = 1, . . . , n.
(5)

The constraints require that the solution fractions λ∗ result in an
aggregate of resolution payments from each agent i that does not

exceed the aggregate of payments to it. The objective function is
the aggregate of payments made throughout the network.

In our illustrative example (3), the numerical solution of (5) is
λ∗

= (1.0, 14.8%, 34.4%, 21.3%). The associated default resolution
payments xij are:

XP
=

⎡⎢⎣ 0 0 10 0
4.426 0 2.951 2.951
3.443 10.328 0 3.443
2.131 0 4.262 0

⎤⎥⎦ . (6)

The natural network extension of the CE rule (b) is the following
Network CE rule:

(bNet) The Network CE rule is a nonnegative matrix (2) requiring
each agent i to pay the same dollar amount xi to each of its
creditors, subject to the constraint that none of its creditors is paid
more than originally owed. That is, the rule is a vector x1, x2, . . . , xn
and requires that

xij = min(xi, cij) and∑
j̸=i

[xij = min(xi, cij)] = Ei =

∑
j̸=i

[xji = min(xj, cji)]. (7)

Using (3), it is easy to verify that the vector (x1 = 10, x2 =

5/3, x3 = 5, x4 = 10/3) enables feasible allocation of the follow-
ing Network CE rule resolution payments:

XCE
=

⎡⎢⎣ 0 0 10 0
5/3 0 5/3 5/3
5 5 0 5

10/3 0 10/3 0

⎤⎥⎦ . (8)

Using (7), denote
∑

j̸=ixij ≡ li(
−→x ), where li(

−→x ) denotes the total
resolution paymentsmade (i.e. liabilities) by agent i, and

∑
j̸=ixji =

ai(
−→x ), the total resolutionpayments received (i.e. assets) by agent i.

We prove the following constructive existence proposition below:

Proposition 1. Under the Network CE rule (7), the feasible allocation
set is nonempty. Moreover, the maximal −→x

∗
= (x∗

1, x
∗

2, . . . , x
∗
n)

defining its required payments x∗

ij = min(cij, x∗

i ) can be found by
solving

max
Xij

∑
i

∑
j̸=i

xij ≡ max
x1,...,xn

∑
i

∑
j̸=i

min(xi, cij) s.t.

li(
−→x ) ≡

∑
j̸=i

min(xi, cij) = ai(
−→x )

≡

∑
j̸=i

min(xj, cji), i = 1, . . . , n.

(9)

Proof. Define the vector-valuedmaps l(−→x ) ≡ (l1(
−→x ), . . . , ln(

−→x ))
and a(−→x ) ≡ (a1(

−→x ), . . . , an(
−→x )) on the subset S of vectors

−→x in which xi ∈ [0,maxj̸=icij], i = 1, . . ., n. This subset is a
complete lattice with the usual ordering ≤ on n-vectors. l(−→x ) is
monotone increasing on S, and hence has an inverse. Because a(−→x )
is monotone nondecreasing on S, the map f : S → S; f (−→x ) =

l−1(a(−→x )) is monotone on the complete lattice S. A fixed point
of f satisfies the constraints in (9). By the Knaster–Tarski Fixed
Point Theorem,2 the map has a set of fixed points which is also a
complete lattice (and hence nonempty), and hence has a maximal
element. So it can be found by solving (9). □

The matrix (8) was found by substituting (3) into problem (9) and
numerically solving it.

2 See https://en.wikipedia.org/wiki/Knaster%E2%80%93Tarski_theorem.
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