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• The symmetric two-player Hirshleifer contest admits a unique equilibrium.
• The support of the equilibrium strategy is finite, and includes the origin.
• We establish a lower bound for the cardinality of the support.
• The undissipated rent approaches zero as the parameter grows to infinity.
• We also discuss ex-post overdissipation and extensions.
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a b s t r a c t

The symmetric two-player Hirshleifer contest admits a unique equilibrium. The equilibrium support is
finite and includes the zero expenditure level. We also establish a lower bound for the cardinality of the
support and an upper bound for the undissipated rent.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mixed equilibria in contests of the generalized Tullock form,
for which winning probabilities depend on the ratio of resources
expended, have recently received much attention from theorists
(Baye et al., 1994; Alcalde and Dahm, 2010; Ewerhart, 2015, 2017a,
b; Feng and Lu, 2017). There is another appealing class of contests,
however, where the winning probabilities depend instead on the
difference of resources expended (Hirshleifer, 1989; Skaperdas,
1996; Baik, 1998; Che and Gale, 2000). In particular, Hirshleifer’s
framework has its merits for the analysis of military combat
(Dupuy, 1987; Hirshleifer, 2000). Notwithstanding, the nature of
mixed equilibria in that model has remained poorly understood.

* Corresponding author.
E-mail addresses: christian.ewerhart@econ.uzh.ch (C. Ewerhart),

gzsun@umac.mo (G.-Z. Sun).

In this paper, we prove uniqueness of the equilibrium in the
symmetric two-player Hirshleifer contest, and offer a characteri-
zation of themixed equilibrium. It is shown that the support of the
symmetric equilibrium strategy is finite and includes the origin.
Moreover, the cardinality of the support grows over any finite
bound as the decisiveness parameter goes to infinity. Further, we
show that the undissipated rent converges to zero as the decisive-
ness parameter goes to infinity, and that ex-post overdissipation
may occur. We conclude by extending the uniqueness result to a
larger class of contests.

The uniqueness result is stated in Section 2, and proven in Sec-
tion 3. Section 4 characterizes the equilibrium. Rent dissipation is
dealt with in Section 5. Section 6 discusses ex-post overdissipation.
Alternative contest technologies are considered in Section 7.
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2. Statement of the uniqueness result

The Hirshleifer contest is specified as follows. Each of two
players i ∈ {1, 2} expends resources xi ≥ 0 in an attempt to win a
prize of normalized value one. Player i’s payoff is given as

Πi(xi, xj) =
exp(αxi)

exp(αxi) + exp(αxj)
− xi (1)

=
1

1 + exp(α(xj − xi))
− xi, (2)

where j ∈ {1, 2} with j ̸= i, and α > 0 measures the decisiveness
of the difference-form contest. In particular, for α → ∞, payoffs
converge to those of the all-pay auction.

Any bid exceeding one is strictly dominated. We therefore
define a mixed strategy for player i as a probability measure µi on
the Borel subsets of [0, 1]. The set of mixed strategies for player
i will be denoted by M , where pure strategies xi ∈ [0, 1] are
interpreted as Dirac measures, as usual. Each player i’s expected
payoff is well-defined for any (µi, µj) ∈ M × M , and will, with
some abuse of notation, be denoted by Πi(µi, µj). An equilibrium is
a pair µ∗

= (µ∗

1, µ
∗

2) ∈ M × M such that Πi(µ∗

i , µ
∗

j ) ≥ Πi(µi, µ
∗

j )
for any i, j ∈ {1, 2} with j ̸= i, and for any µi ∈ M .

Proposition 1. For any α > 0, the Hirshleifer contest with parameter
α has a unique equilibrium.

3. Proof of Proposition 1

Equilibrium existence is known (cf. Hirshleifer, 1989, fn. 12).
The proof of uniqueness starts from the following observation.

Lemma1. Let µ = (µ1, µ2) ∈ M×M. Then, for any i, j ∈ {1, 2}with
j ̸= i , the set of maximizers Xi(µ) = argmax̃xi∈[0,1]Πi (̃xi, µj) is finite.

Proof. The proof is a straightforward adaption of Ewerhart (2015,
Th. 3.2), and therefore omitted.1 □

Next, we show the following.

Lemma 2. The set Xα
=
⋂

µ∗ equilibrium X1(µ∗) is nonempty, and
contains the support of any equilibrium strategy (for both players).

Proof. Take an equilibrium µ∗
= (µ∗

1, µ
∗

2). Clearly, the support
of µ∗

1 is a subset of X1(µ∗). Let µ∗∗
= (µ∗∗

1 , µ∗∗

2 ) be an arbi-
trary equilibrium. Then, since equilibria in two-player contests
are interchangeable (Ewerhart, 2017b, Appendix), (µ∗

1, µ
∗∗

2 ) is an
equilibrium. Therefore, the support ofµ∗

1 is a subset of X1(µ∗

1, µ
∗∗

2 ).
But X1(µ∗

1, µ
∗∗

2 ) = X1(µ∗∗). Hence, the support ofµ∗

1 is contained in
X1(µ∗∗) for any equilibrium µ∗∗. In particular, Xα

̸= ∅. The second
claim follows by symmetry. □

Denote by K = |Xα| the number of elements of Xα . Thus, Xα
=

{z1, . . . , zK }, where z1 > z2 > . . . > zK . Suppose first that K = 1.
Then, the equilibrium is obviously unique. Suppose next that K ≥

2. Fix some equilibrium µ∗
= (µ∗

1, µ
∗

2), and let pmj = µ∗

j ({zm}) ≥ 0
denote the weight assigned by µ∗

j to zm, for j ∈ {1, 2} and m ∈

{1, . . . , K }. We know that z1, . . . , zK all deliver the equilibrium
payoff Π∗

i against µ∗

j , i.e.,

Π∗

i =

(
K∑

m=1

pmj
exp(αzk)

exp(αzk) + exp(αzm)

)
− zk

(k = 1, . . . , K ; j ̸= i).

(3)

1 If attention is restricted to strategies that are absolutely continuous with
respect to the Lebesgue measure, the use of complex-analytic methods may be
circumvented (Sun, 2017).

Thus, there areK equations to identify (K+1) unknowns p1j , . . . , p
K
j

and Π∗

i . Notably, adding the relationship
∑K

m=1p
m
j = 1 does not

help in general. Instead, we focus on the largest element of the
support of player i’s equilibrium strategy.2 Since K ≥ 2, we know
that z1 is an interior maximum. Hence, the first-order condition
implies

K∑
m=1

pmj
α exp(αz1) exp(αzm)

(exp(αz1) + exp(αzm))2
= 1. (4)

Combining these (K + 1) equations yields⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp(αz1)
exp(αz1) + exp(αz1)

· · ·
exp(αz1)

exp(αz1) + exp(αzK )
1

...
. . .

...
...

exp(αzK )
exp(αzK ) + exp(αz1)

· · ·
exp(αzK )

exp(αzK ) + exp(αzK )
1

α exp(αz1) exp(αz1)
(exp(αz1) + exp(αz1))2

· · ·
α exp(αz1) exp(αzK )

(exp(αz1) + exp(αzK ))2
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎝
p1j
...

pKj
−Π∗

i

⎞⎟⎟⎟⎠ =

⎛⎜⎝
z1
...
zK
1

⎞⎟⎠ . (5)

It turns out that (5) has at most one solution.

Lemma 3. The square matrix on the left-hand side of (5) is invertible.

Proof. Let ek = exp(αzk) for k = 1, . . . , K , and

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1
e1 + e1

· · ·
e1

e1 + eK
1

e2
e2 + e1

· · ·
e2

e2 + eK
1

...
. . .

...
...

eK
eK + e1

· · ·
eK

eK + eK
1

αe1e1
(e1 + e1)2

· · ·
αe1eK

(e1 + eK )2
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

Subtracting the first row from row k, for k = 2, . . . , K , yields
det A1 = det A2, where

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1
e1 + e1

· · ·
e1

e1 + eK
1

(e2 − e1)e1
(e2 + e1)(e1 + e1)

· · ·
(e2 − e1)eK

(e2 + eK )(e1 + eK )
0

...
. . .

...
...

(eK − e1)e1
(eK + e1)(e1 + e1)

· · ·
(eK − e1)eK

(eK + eK )(e1 + eK )
0

αe1e1
(e1 + e1)2

· · ·
αe1eK

(e1 + eK )2
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

Next, we extract the factor em/(e1 + em) > 0 from column m,
for m = 1, . . . , K , and the factor (ek − e1) > 0 from row k, for
k = 2, . . . , K . Further, we extract the factor αe1 > 0 from the last
row. This yields

det A2 =

( ∏
1≤m≤K

em
e1 + em

)
·

( ∏
2≤k≤K

(ek − e1)

)
· αe1 · det A3, (8)

2 The first-named authorwould like to thank Larry Samuelson for this suggestion.
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