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• We derive a modified Kalman smoother for state space systems with lagged states in the measurement equation.
• Computationally efficient algorithms for the modified Kalman smoother are presented.
• It is proven that a conjecture in Nimark (2015) for obtaining a modified Kalman smoother is in general not correct.
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a b s t r a c t

In this paper we derive a modified Kalman smoother for state space systems with lagged states in
the measurement equation. This modified Kalman smoother minimizes the mean squared error (MSE).
Computationally efficient algorithms that can be used to implement it in practice are discussed. We also
show that the conjecture in Nimark (2015) that the output of his modified Kalman filter for this type
of systems can be plugged into the standard Kalman smoother is in general not correct. The competing
smoothers are compared with regards to the MSE.
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In this note, we consider state space systemswith a lagged state
in the measurement equation for which Nimark (2015) derives
a modified low-dimensional Kalman filter. Nimark (2015) also
states, without a formal derivation, that the filtered state estimates
from the modified filter can be plugged into the standard, i.e., un-
modified, Kalman smoother of Hamilton (1994). In this paper we
show that to use the filtered state estimates from the modified
filter, we also need to modify the Kalman smoother to obtain
the MSE-minimizing smoothed state estimates. That is, the claim
that the filtered estimates from Nimark’s (2015) modified filter
can be plugged into the standard Kalman smoother is in general
not correct. In what follows, we derive three modified Kalman
smoothers that all can be used in combination with the modified
Kalman filter of Nimark (2015). The first is based on the same
principles as the one in Hamilton (1994). The second and third, and
computationally more efficient, smoothers are a modified version
of the smoother of de Jong (1988, 1989) and Kohn and Ansley
(1989), and amodified version of the disturbance-smoother-based
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state smoother of Koopman (1993). Finally, theminimum variance
estimator for the smoothed states will be compared to the Nimark
(2015) smoother.

1. The state space model

In this note we stick as close as possible to the notation of
Nimark (2015) and consider the state space model

Xt = AXt−1 + Cut , Zt = D1Xt + D2Xt−1 + Rut , (1.1)

where ut is a m-dimensional vector of disturbances being multi-
variate normally distributed with zero mean and the identity as
variance–covariance matrix. The observable at time t , Zt , is a p× 1
vector and the state vector Xt is of dimension n × 1. Similar to
Nimark (2015),weuse for the conditional expectation and variance
the notations

Xt|t−s = E(Xt |Z1:t−s, X0|0), Pt|t = E((Xt − Xt|t )(Xt − Xt|t )′),

with Z1:t = (Z ′

1, . . . , Z
′
t )

′ and we initialize the system by X0 ∼

N(X0|0, P0|0).
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2. The modified Kalman filter

The standard solution to apply the Kalman filter to the state
space system (1.1) is obtained by augmenting the state vector with
lagged states. A modified Kalman filter, which operates with an n-
dimensional state vector, was derived by Nimark (2015). Nimark’s
(2015)modified Kalman filter can be summarized by the following
recursion

Z̃t = Zt − D̃Xt−1|t−1, Pt|t−1 = APt−1|t−1A′
+ CC ′, (2.1)

Xt|t = AXt−1|t−1 + Kt Z̃t , Pt|t = Pt|t−1 − KtFtK ′

t , (2.2)

with D̃ = (D1A + D2) and where the Kalman gain is given by
Kt = UtF−1

t with

Ut = E(Xt Z̃ ′

t ) = APt−1|t−1D̃′
+ CC ′D′

1 + CR′, (2.3)

Ft = E(Z̃t Z̃ ′

t ) = D̃Pt−1|t−1D̃′
+ (D1C + R)(D1C + R)′. (2.4)

3. On the Kalman smoother for systems with a lagged state in
the measurement equation

To derive the updating equations which are purely based on
filtered states and not on the observables, Hamilton (1994) uses
the following approach.1 By the formula for updating linear pro-
jections (Eq. [4.5.30] in Hamilton, 1994) one gets

E(Xt |Xt+1, Z1:t , X0|0) = Xt|t + Ĵt (Xt+1 − Xt+1|t ),

with Ĵt = Pt|tA′P−1
t+1|t . In a next step, Hamilton (1994) argues that

E(Xt |Xt+1, Z1:t , X0|0) is equal to E(Xt |Xt+1, Z1:T , X0|0), as the error

Xt − E(Xt |Xt+1, Z1:t , X0|0)

is uncorrelated with Zt+j, for 0 < j ≤ T − t . While this is true for
a standard Kalman filter, as shown in Hamilton (1994), this is (in
general) not the case for state space systems with a lagged state in
the measurement equation, i.e., in general for state space systems
of the form (1.1)

Corr(Xt − E(Xt |Xt+1, Z1:t , X0|0), Zt+1) ̸= 0

and therefore

E(Xt |Xt+1, Z1:t , X0|0) ̸= E(Xt |Xt+1, Z1:T , X0|0). (3.1)

As a consequence, the smoother stated in Eq. (4.2) in Nimark
(2015)2

X̂t|T = Xt|t + Ĵt (Xt+1|T − Xt+1|t ), Ĵt = Pt|tA′P−1
t+1|t , (3.2)

is in general not equal to E(Xt |Z1:T , X0|0) as claimed by Nimark
(2015). Note that in general the smoothed estimate, X̂t|T , (Eq. (3.2))
is also not minimizing the MSE to Xt conditional on the complete
history of the observables Z1:T .

This can be easily verified, e.g., by considering the special case
A = 0n×n. Then, by (3.2), we get

X̂T−1|T = XT−1|T−1 ⇒ Var(XT−1 − X̂T−1|T ) = PT−1|T−1 (3.3)

and in contrast for

XT−1|T = XT−1|T−1 + PT−1|T−1D′

2F
−1
T Z̃T (3.4)

we obtain

Var(XT−1 − XT−1|T ) = PT−1|T−1 − PT−1|T−1D′

2F
−1
T D2PT−1|T−1. (3.5)

1 This state smoothing algorithm goes back to Anderson and Moore (1979) and
Rauch et al. (1965).
2 Note that there is a typo in Eq. (4.2) in Nimark (2015), where the index of Ĵ was

t − 1 instead of t , as in Hamilton (1994).

Both smoothers, (3.2) and (3.4), are obviously unbiased and as
PT−1|T−1D′

2F
−1
T D2PT−1|T−1 is positive semidefinite if FT is positive

semidefinite it follows with (3.3) and (3.5)

MSE(XT−1|T ) = tr(PT−1|T−1) − tr(PT−1|T−1D′

2F
−1
T D2PT−1|T−1)

≤ tr(PT−1|T−1) = MSE(X̂T−1|T ),

i.e., the smoother, X̂T−1|T , is not the MSE-minimizing estimator of
XT−1 given the complete history of the observables Z1:T .

4. Kalman smoothing algorithms for the modified system

Similar to Hamilton (1994), the MSE-minimizing smoother for
the modified system can be obtained using the updating equation
for linear projections but with an adaption for systems with a
lagged state in themeasurement equation. Start by considering the
conditional expectationE(Xt |Xt+1, Z1:t+1, X0|0) and by applying the
formula for updating a linear projection (Eq. [4.5.30] in Hamilton,
1994)

E(Xt |Xt+1, Z1:t+1, X0|0)
= Xt|t+1 + E((Xt − Xt|t+1)(Xt+1 − Xt+1|t+1)′)

· E((Xt+1 − Xt+1|t+1)(Xt+1 − Xt+1|t+1)′)−1(Xt+1 − Xt+1|t+1)

= Xt|t+1 + P ′

t+1,t|t+1P
−1
t+1|t+1(Xt+1 − Xt+1|t+1),

where Pt+1,t|t+1 = E((Xt+1 − Xt+1|t+1)(Xt − Xt|t+1)′) = APt|t −

Kt+1D̃Pt|t . From the standard theory on state smoothing (see, e.g.,
Durbin and Koopman, 2012), we get the one-step ahead smoothed
state as

Xt|t+1 = Xt|t + Pt|t D̃′F−1
t+1Z̃t+1.

Future observables, Zt+j, for 1 < j ≤ T − t , can be written as

Zt+j = D̃Xt+j−1 + (D1C + R)ut+j

= D̃
(
Aj−2Xt+1 +

j−1∑
i=2

Aj−1−iCut+i

)
+ (D1C + R)ut+j,

where we use the notational convention that A0 is the identity
and An denotes the n-th power of the square matrix A. Therefore,
using the same reasoning as in Hamilton (1994), we see that the
prediction error

Xt − E(Xt |Xt+1, Z1:t+1, X0|0)

= Xt − Xt|t+1 − P ′

t+1,t|t+1P
−1
t+1|t+1(Xt+1 − Xt+1|t+1) (4.1)

is uncorrelated with Zt+j for 1 < j ≤ T − t . This follows because
the prediction error (4.1) is by construction uncorrelatedwithXt+1,
and by assumption uncorrelated with ut+j, ut+j−1, . . . , ut+2. As a
consequence, we get

E(Xt |Xt+1, Z1:T , X0|0) = E(Xt |Xt+1, Z1:t+1, X0|0) (4.2)

and by applying the lawof iterated projections, asHamilton (1994),
we obtain the smoothed estimate, E(Xt |Z1:T , X0|0), by projecting
(4.2) on Z1:T . The smoothed estimate is given by

Xt|T = E(Xt |Z1:T , X0|0) = Xt|t+1 + Jt (Xt+1|T − Xt+1|t+1), (4.3)

with Jt = P ′

t+1,t|t+1P
−1
t+1|t+1.

4.1. MSE of the smoothed state

Analogously toHamilton (1994), by subtractingXt fromEq. (4.3)
and rearranging, we obtain

Xt − Xt|T + JtXt+1|T = Xt − Xt|t+1 + JtXt+1|t+1. (4.4)
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